51Nod 1060 最复杂的数(反素数)

1060 最复杂的数
基准时间限制:1 秒 空间限制:131072 KB
把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数。
例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6。如果有多个数复杂度相等,输出最小的。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 100)
第2 - T + 1行:T个数,表示需要计算的n。(1 <= n <= 10^18)
Output
共T行,每行2个数用空格分开,第1个数是答案,第2个数是约数的数量。
Input示例
5
1
10
100
1000
10000
Output示例
1 1
6 4
60 12
840 32
7560 64

思路:就是求<= n得反素数.
反素数 性质一: 一个反素数的质因子必然是从2开始连续的质数.
性质二:p=2 ^ t13 ^ t25 ^ t37^t4…必然t1>=t2>=t3>=…
当然他的因子个数也就是(t1+1)
(t2+1)*(t3+1)…

所以直接dfs即可,注意超longlong问题.

代码:

#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 2e5+5;

ll n,ansm,ansn;
int pri[1234],is_prime[1234];

void init()
{
	int cnt = 0;
	for(int i = 2;i<= 500;i++)
	{
		if(!is_prime[i])
		{
			pri[++cnt] = i;
			for(int j = i*i;j<= 500;j+= i)
				is_prime[j] = 1;
		}
	}
	return ;
}

void dfs(int x,ll m,int sum,int limit)
{
	if(m> n||m< 0||x> 16) return ;
	if(sum> ansn)
	{
		ansn = sum;
		ansm = m;
	}
	else if(sum == ansn&&m> 0&&m< ansm)
		ansm = m;
	
	if(n/pri[x]< m) return ;
	
	for(int i = 1;i<= limit&&m< n&&m> 0;i++)
	{
		m*= 1ll*pri[x];
		dfs(x+1,m,sum*(i+1),i);
		if(n/pri[x]< m) break;
	}
	
	return ;
}

int main()
{
	init();
	
	int t;
	cin>>t;
	
	while(t--)
	{
		ansm = 0;
		ansn = 0;
		scanf("%lld",&n);
		dfs(1,1,1,100);
		
		printf("%lld %lld\n",ansm,ansn);
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值