1060 最复杂的数
基准时间限制:1 秒 空间限制:131072 KB
把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数。
例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6。如果有多个数复杂度相等,输出最小的。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 100)
第2 - T + 1行:T个数,表示需要计算的n。(1 <= n <= 10^18)
Output
共T行,每行2个数用空格分开,第1个数是答案,第2个数是约数的数量。
Input示例
5
1
10
100
1000
10000
Output示例
1 1
6 4
60 12
840 32
7560 64
思路:就是求<= n得反素数.
反素数 性质一: 一个反素数的质因子必然是从2开始连续的质数.
性质二:p=2 ^ t13 ^ t25 ^ t37^t4…必然t1>=t2>=t3>=…
当然他的因子个数也就是(t1+1)(t2+1)*(t3+1)…
所以直接dfs即可,注意超longlong问题.
代码:
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 2e5+5;
ll n,ansm,ansn;
int pri[1234],is_prime[1234];
void init()
{
int cnt = 0;
for(int i = 2;i<= 500;i++)
{
if(!is_prime[i])
{
pri[++cnt] = i;
for(int j = i*i;j<= 500;j+= i)
is_prime[j] = 1;
}
}
return ;
}
void dfs(int x,ll m,int sum,int limit)
{
if(m> n||m< 0||x> 16) return ;
if(sum> ansn)
{
ansn = sum;
ansm = m;
}
else if(sum == ansn&&m> 0&&m< ansm)
ansm = m;
if(n/pri[x]< m) return ;
for(int i = 1;i<= limit&&m< n&&m> 0;i++)
{
m*= 1ll*pri[x];
dfs(x+1,m,sum*(i+1),i);
if(n/pri[x]< m) break;
}
return ;
}
int main()
{
init();
int t;
cin>>t;
while(t--)
{
ansm = 0;
ansn = 0;
scanf("%lld",&n);
dfs(1,1,1,100);
printf("%lld %lld\n",ansm,ansn);
}
return 0;
}