is calld Vandermonde Identity. According to Wikipedia and some other CSDN blogs, I breifly summarize the way of proving this identity as follows:
The first version of proof is quite intuitive. We explain this identity as that there are n+m students in a class, and we want to pick k of them out. This intuition actually tells us that whenwe try to tackle some problems related to binomial coefficient, give it a vivid context, which will help us understand the problem better.
The second verion is more mathematical.
Let x=1, and we have
Thus we guess
. And the rest of the thing is simply to prove this by using the method of mathematical indeuction which is trivial and we skip this part.
Now we talk a little more about this identity.
We assume that m<=n, and by replacing k=m, we have , which is another beautiful identity we should pay attention to.
And remember, we can literally let n, m, k, be any number we want them to be in order to gain some useful properties in proof or application.