Vandermonde Identity

本文介绍了范德蒙德恒等式的两种证明方法:直观解释涉及从组合学角度理解从n+m个学生中选择k个的场景;数学证明则通过赋值和数学归纳法展示其正确性。此外,还讨论了该恒等式在特定情况下的应用,例如当k=m时的特殊形式,并强调了参数的灵活性在证明和应用中的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i} is calld Vandermonde Identity. According to Wikipedia and some other CSDN blogs, I breifly summarize the way of proving this identity as follows:

The first version of proof is quite intuitive. We explain this identity as that there are n+m students in a class, and we want to pick k of them out. This intuition actually tells us that whenwe try to tackle some problems related to binomial coefficient, give it a vivid context, which will help us understand the problem better. 

The second verion is more mathematical. 

\sum_{k=0}^{n+m}\binom{n+m}{k}x^k=(1+x)^{n+m}=(1+x)^n(1+x)^m=(\sum_{i=0}^{n}\binom{n}{i}x^i)(\sum_{j=0}^{m}\binom{m}{j}x^j)=\sum_{k=0}^{n+m}\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}x^kLet x=1, and we have

\sum_{k=0}^{n+m}\binom{n+m}{k}=\sum_{k=0}^{n+m}\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}Thus we guess 

\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}. And the rest of the thing is simply to prove this by using the method of mathematical indeuction which is trivial and we skip this part.

Now we talk a little more about this identity.

We assume that m<=n, and by replacing k=m, we have \binom{n+m}{m}=\sum_{i=0}^{m}\binom{n}{i}\binom{m}{m-i}=\sum_{i=0}^{m}\binom{n}{i}\binom{m}{i}, which is another beautiful identity we should pay attention to.

And remember, we can literally let n, m, k, be any number we want them to be in order to gain some useful properties in proof or application.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值