Vandermonde Identity

\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i} is calld Vandermonde Identity. According to Wikipedia and some other CSDN blogs, I breifly summarize the way of proving this identity as follows:

The first version of proof is quite intuitive. We explain this identity as that there are n+m students in a class, and we want to pick k of them out. This intuition actually tells us that whenwe try to tackle some problems related to binomial coefficient, give it a vivid context, which will help us understand the problem better. 

The second verion is more mathematical. 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值