P1906【线段树】火车线路

P1906【线段树】火车线路
时间限制 : 10000 MS 空间限制 : 65536 KB
问题描述

某列火车行使在C个城市之间(出发的城市编号为1,结束达到的城市的编号为C),假设该列火车有S个座位,现在有R笔预订票的业务。现在想对这R笔业务进行处理,看哪些预定能满足,哪些不能满足。
一笔预定由O、D、N三个整数组成,表示从起点站O到目标站D需要预定N个座位。一笔预定能满足是指该笔业务在行程范围内有能满足的空座位,否则就不能满足。一笔业务不能拆分,也就是起点和终点站不能更改,预定的座位数目也不能更改。所有的预定需求按给出先后顺序进行处理。
请你编写程序,看那些预定业务能满足,那些不能满足。

输入格式

第一行为三个整数C、S、R,(1<=c<=60 000, 1<=s<=60 000, 1<=r<=60 000)他们之间用空隔分开。接下来的R行每行为三个整数O、D、N,(1<=o

题解

区间修改的区间最小值。
由题意题意知,给定一个区间每次修改一个区间的值,若能输出T,若不能则输出N。稍加分析即可知,一个区间能否被修改取决其min,所以建树时n表示该区间最小的值,因为是区间操作用lazy标记加以维护。
因为到终点不能赖在车上,所以要左闭右开。

丑代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stdio.h>
using namespace std;
#define maxn 480000
#define inf 999999999
struct node{
  int l,r,n,lazy;   
};
node tree[maxn];
int c,s,r;
void bt(int p,int x,int y)
{
    tree[p].l=x;tree[p].r=y;
    tree[p].n=s;
    if(x<y)
    {
        int mid=(x+y)>>1;
        bt(p<<1,x,mid);
        bt(p<<1|1,mid+1,y);
    }
}
void pd(int k)
{
    tree[k<<1].n-=tree[k].lazy;
    tree[k<<1].lazy+=tree[k].lazy;;
    tree[k<<1|1].n-=tree[k].lazy;
    tree[k<<1|1].lazy+=tree[k].lazy;
    tree[k].lazy=0;
}
int query(int k,int x,int y)
{
    if(tree[k].lazy) pd(k);
    if(x<=tree[k].l&&tree[k].r<=y) return tree[k].n;
    int lm=inf,rm=inf,mid=(tree[k].l+tree[k].r)>>1;
    if(mid>=x) lm=query(k<<1,x,y);
    if(y>mid) rm=query(k<<1|1,x,y);
    return min(lm,rm);
}
void change(int k,int x,int y,int z)
{
    if(tree[k].lazy) pd(k);
    if(x<=tree[k].l&&tree[k].r<=y)
    {
        tree[k].n-=z;
        tree[k].lazy+=z;
        return;
    }
    int mid=(tree[k].l+tree[k].r)>>1;
    if(mid>=x) change(k<<1,x,y,z);
    if(mid<y) change(k<<1|1,x,y,z);
    tree[k].n=min(tree[k<<1].n,tree[k<<1|1].n);
}
int main()
{
    scanf("%d%d%d",&c,&s,&r);
    bt(1,1,c);
    int i,j,k;
    for(i=1;i<=r;i++)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        y--;
        int temp=query(1,x,y);
        if(z<=temp){
            cout<<"T"<<endl;
            change(1,x,y,z);
        }
        else cout<<"N"<<endl;
    }
}
内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值