P1906【线段树】火车线路
时间限制 : 10000 MS 空间限制 : 65536 KB
问题描述
某列火车行使在C个城市之间(出发的城市编号为1,结束达到的城市的编号为C),假设该列火车有S个座位,现在有R笔预订票的业务。现在想对这R笔业务进行处理,看哪些预定能满足,哪些不能满足。
一笔预定由O、D、N三个整数组成,表示从起点站O到目标站D需要预定N个座位。一笔预定能满足是指该笔业务在行程范围内有能满足的空座位,否则就不能满足。一笔业务不能拆分,也就是起点和终点站不能更改,预定的座位数目也不能更改。所有的预定需求按给出先后顺序进行处理。
请你编写程序,看那些预定业务能满足,那些不能满足。
输入格式
第一行为三个整数C、S、R,(1<=c<=60 000, 1<=s<=60 000, 1<=r<=60 000)他们之间用空隔分开。接下来的R行每行为三个整数O、D、N,(1<=o
题解
区间修改的区间最小值。
由题意题意知,给定一个区间每次修改一个区间的值,若能输出T,若不能则输出N。稍加分析即可知,一个区间能否被修改取决其min,所以建树时n表示该区间最小的值,因为是区间操作用lazy标记加以维护。
因为到终点不能赖在车上,所以要左闭右开。
丑代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stdio.h>
using namespace std;
#define maxn 480000
#define inf 999999999
struct node{
int l,r,n,lazy;
};
node tree[maxn];
int c,s,r;
void bt(int p,int x,int y)
{
tree[p].l=x;tree[p].r=y;
tree[p].n=s;
if(x<y)
{
int mid=(x+y)>>1;
bt(p<<1,x,mid);
bt(p<<1|1,mid+1,y);
}
}
void pd(int k)
{
tree[k<<1].n-=tree[k].lazy;
tree[k<<1].lazy+=tree[k].lazy;;
tree[k<<1|1].n-=tree[k].lazy;
tree[k<<1|1].lazy+=tree[k].lazy;
tree[k].lazy=0;
}
int query(int k,int x,int y)
{
if(tree[k].lazy) pd(k);
if(x<=tree[k].l&&tree[k].r<=y) return tree[k].n;
int lm=inf,rm=inf,mid=(tree[k].l+tree[k].r)>>1;
if(mid>=x) lm=query(k<<1,x,y);
if(y>mid) rm=query(k<<1|1,x,y);
return min(lm,rm);
}
void change(int k,int x,int y,int z)
{
if(tree[k].lazy) pd(k);
if(x<=tree[k].l&&tree[k].r<=y)
{
tree[k].n-=z;
tree[k].lazy+=z;
return;
}
int mid=(tree[k].l+tree[k].r)>>1;
if(mid>=x) change(k<<1,x,y,z);
if(mid<y) change(k<<1|1,x,y,z);
tree[k].n=min(tree[k<<1].n,tree[k<<1|1].n);
}
int main()
{
scanf("%d%d%d",&c,&s,&r);
bt(1,1,c);
int i,j,k;
for(i=1;i<=r;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
y--;
int temp=query(1,x,y);
if(z<=temp){
cout<<"T"<<endl;
change(1,x,y,z);
}
else cout<<"N"<<endl;
}
}