|
问题描述
何老板在NK食堂订了m桌酒席,宴请信竞队的n名队员。酒桌为圆形,且每桌菜肴都是完全一样的。
由你来安排队员们就座。何老板要求,每桌至少坐1人,最多坐n人。问总共有多少种不同的安排方案?
注意,同一桌队员就座的位置会影响方案数,比如A,B,C,D同桌,下面两种就座方案是不同的:
下面4种方案是相同的,我们认为它们是同一种方案:
输入格式
一行,两个整数n和m
输出格式
一行,一个整数,表示计算结果,mod 1000000007再输出
样例输入 1
4 2
样例输出 1
11
样例输入 2
9 3
样例输出 2
118124
提示
1<=m<=n<=2000
分析:第一类斯特林数
s1[n][m]=s1[n-1][m-1]+(n-1)*s1[n-1][m]
ACcode:
#include<bits/stdc++.h>
#define ll long long
#define mod 1000000007
using namespace std;
ll n,m;
ll s1[2005][2005];
inline void getStirlng(){
for(int i=0;i<=n;i++)s1[i][i]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=i&&j<=m;j++){
s1[i][j]=(s1[i-1][j-1]+(i-1)*s1[i-1][j])%mod;
}
}
}
int main(){
cin>>n>>m;
getStirlng();
cout<<s1[n][m];
}