牛客第十场Rikka with Prefix Sum

由于其中的2操作非常多,我们就需要将其快速的更改,就会用到组合数的东西

其实自己手写一下就可以发现对于一个点增加的值在经过不断地前缀和累加过程中对于一点的贡献满足杨辉三角

所以我们就需要记录一下其中的2操作数,在线操作

一点(i,j)在进行t次操作后对于(t,y)的贡献为C(t-i+y-j-1,t-i-1);

对于查询时我们就需要将当前的t+1进行查询,就可以就可以快速知道该点对于区间内的所有值的贡献

#include<bits/stdc++.h>
using namespace std;
const int maxn=4e6+500;
const int mod=998244353;
int pre[maxn+1],inv[maxn+1],len;
struct ss
{
    int x;
    int y;
    int w;
}bos[maxn+1];
int quick(int a,int b)
{
    int ans=1;
    while(b)
    {
        if(b&1)ans=1ll*ans*a%mod;
        a=1ll*a*a%mod;
        b>>=1;
    }
    return ans;
}
int C(int n,int m)
{
    return 1ll*pre[n]*inv[m]%mod*inv[n-m]%mod;
}
int query(int pos,int t)
{
    int ans=0;
    for(int i=1;i<=len;i++)
    {
        if(bos[i].y<=pos)ans=(ans+1ll*bos[i].w*C(pos-bos[i].y+t-bos[i].x-1,t-bos[i].x-1))%mod;
    }
    return ans;
}
void solve()
{
    int n,m;
    scanf("%d%d",&n,&m);
    int t=0;len=0;
    while(m--)
    {
        int k;
        scanf("%d",&k);
        if(k==1)
        {
            int l,r,w;
            scanf("%d%d%d",&l,&r,&w);
            bos[++len]=(ss){t-1,l,w};
            bos[++len]=(ss){t-1,r+1,(mod-w)%mod};
        }
        else if(k==2)t++;
        else
        {
            int l,r;
            scanf("%d%d",&l,&r);
            printf("%d\n",(query(r,t+1)-query(l-1,t+1)+mod)%mod);
        }
    }
}
int main()
{
    pre[0]=1;
    //int N=1e5;
    for(int i=1;i<=maxn;i++)
    {
        pre[i]=1ll*pre[i-1]*i%mod;
    }
   // cout<<pre[N]<<endl;
    inv[maxn]=quick(pre[maxn],mod-2);
    //cout<<inv[N]<<endl;
    for(int i=maxn-1;i>=0;i--)
    {
        inv[i]=1ll*inv[i+1]*(i+1)%mod;
    }
 
    int t;
    for(scanf("%d",&t);t;t--)
    {
        solve();
    }
    return 0;
}
View Code

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值