1930: [Shoi2003]pacman 吃豆豆

由于自己太沙茶,WA了8次才过,还是卡着内存过得(65420kb)

首先肯定拆点求最大费用最大流就对了。

最朴素的方法就是对于任意两点i,j能从i走到j就从i的出点向j的入点连边,然后就会发现,不仅TLE还MLE。

考虑一下发现如果i能走到j,j能走到k,那么i到k的边是完全不必要的。

所以先按x递增(相同则y递增)排序,然后对于每个点,在扫描其后点时维护当前最低,小于最低才连边。

然后就过了O(∩_∩)O

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
using namespace std;
const int inf=1e9;
const int N=2000+5;
struct Edge{
	int to,next,v,c;
}e[4100000];
struct Node{
	int x,y;
	bool operator<(const Node &rhs)const{
		if(x!=rhs.x)return x<rhs.x;
		return y<rhs.y;
	}
}a[N];
int head[N*2],d[N*2],from[N*2],cnt=1,p[N*2];
bool inq[N*2];
void ins(int u,int v,int w,int c){
	cnt++;e[cnt].to=v;
	e[cnt].next=head[u];head[u]=cnt;
	e[cnt].v=w;e[cnt].c=c;
}
void insert(int u,int v,int w,int c){
	ins(u,v,w,c);ins(v,u,0,-c);
}
bool spfa(int s,int t,int &cost){
	memset(d,0x3f,sizeof(d));
	queue<int>q;q.push(s);d[s]=0;
	while(!q.empty()){
		int u=q.front();q.pop();inq[u]=false;
		for(int i=head[u];i;i=e[i].next)
		if(e[i].v&&d[e[i].to]>d[u]+e[i].c){
			d[e[i].to]=d[u]+e[i].c;
			from[e[i].to]=u;
			p[e[i].to]=i;
			if(!inq[e[i].to]){inq[e[i].to]=true;q.push(e[i].to);}
		}
	}
	if(d[t]>=inf)return false;
	int x=inf;
	for(int i=t;i!=s;i=from[i])x=min(x,e[p[i]].v);
	for(int i=t;i!=s;i=from[i]){
		e[p[i]].v-=x;e[p[i]^1].v+=x;cost+=x*e[p[i]].c;
	}
	return true;
}
int mcmf(int s,int t){int cost=0;while(spfa(s,t,cost));return cost;}
int main(){
	int n;scanf("%d",&n);
	int S=n+n+1,T=S+1,T1=T+1;
	for(int i=1;i<=n;i++)scanf("%d%d",&a[i].x,&a[i].y);
	sort(a+1,a+1+n);
	for(int i=1;i<=n;i++){
		insert(S,i,1,0);
		insert(i,i+n,1,-1);
		insert(i,i+n,1,0);
		insert(i+n,T,1,0);
	}
	insert(0,S,2,0);
	insert(T,T1,2,0);
	for(int i=1;i<=n;i++){
		int tmp=inf;
		for(int j=i+1;j<=n;j++){
			if(a[j].y<tmp&&a[j].y>=a[i].y)
			insert(i+n,j,2,0);
			if(a[j].y>=a[i].y)
			tmp=min(tmp,a[j].y);
		}
	}
	printf("%d",-mcmf(0,T1));
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值