由于自己太沙茶,WA了8次才过,还是卡着内存过得(65420kb)
首先肯定拆点求最大费用最大流就对了。
最朴素的方法就是对于任意两点i,j能从i走到j就从i的出点向j的入点连边,然后就会发现,不仅TLE还MLE。
考虑一下发现如果i能走到j,j能走到k,那么i到k的边是完全不必要的。
所以先按x递增(相同则y递增)排序,然后对于每个点,在扫描其后点时维护当前最低,小于最低才连边。
然后就过了O(∩_∩)O
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
using namespace std;
const int inf=1e9;
const int N=2000+5;
struct Edge{
int to,next,v,c;
}e[4100000];
struct Node{
int x,y;
bool operator<(const Node &rhs)const{
if(x!=rhs.x)return x<rhs.x;
return y<rhs.y;
}
}a[N];
int head[N*2],d[N*2],from[N*2],cnt=1,p[N*2];
bool inq[N*2];
void ins(int u,int v,int w,int c){
cnt++;e[cnt].to=v;
e[cnt].next=head[u];head[u]=cnt;
e[cnt].v=w;e[cnt].c=c;
}
void insert(int u,int v,int w,int c){
ins(u,v,w,c);ins(v,u,0,-c);
}
bool spfa(int s,int t,int &cost){
memset(d,0x3f,sizeof(d));
queue<int>q;q.push(s);d[s]=0;
while(!q.empty()){
int u=q.front();q.pop();inq[u]=false;
for(int i=head[u];i;i=e[i].next)
if(e[i].v&&d[e[i].to]>d[u]+e[i].c){
d[e[i].to]=d[u]+e[i].c;
from[e[i].to]=u;
p[e[i].to]=i;
if(!inq[e[i].to]){inq[e[i].to]=true;q.push(e[i].to);}
}
}
if(d[t]>=inf)return false;
int x=inf;
for(int i=t;i!=s;i=from[i])x=min(x,e[p[i]].v);
for(int i=t;i!=s;i=from[i]){
e[p[i]].v-=x;e[p[i]^1].v+=x;cost+=x*e[p[i]].c;
}
return true;
}
int mcmf(int s,int t){int cost=0;while(spfa(s,t,cost));return cost;}
int main(){
int n;scanf("%d",&n);
int S=n+n+1,T=S+1,T1=T+1;
for(int i=1;i<=n;i++)scanf("%d%d",&a[i].x,&a[i].y);
sort(a+1,a+1+n);
for(int i=1;i<=n;i++){
insert(S,i,1,0);
insert(i,i+n,1,-1);
insert(i,i+n,1,0);
insert(i+n,T,1,0);
}
insert(0,S,2,0);
insert(T,T1,2,0);
for(int i=1;i<=n;i++){
int tmp=inf;
for(int j=i+1;j<=n;j++){
if(a[j].y<tmp&&a[j].y>=a[i].y)
insert(i+n,j,2,0);
if(a[j].y>=a[i].y)
tmp=min(tmp,a[j].y);
}
}
printf("%d",-mcmf(0,T1));
return 0;
}