ural 1144. The Emperor's Riddle

本文分享了一道2006年的算法题解答过程,通过使用贪心算法结合随机化策略,解决了初始方案中出现的时间复杂度过高的问题。文中详细记录了从最初的vector实现到最终优化版本的心路历程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

06年的论文题

玄学!!!!

玄学!!!!

玄学!!!!

重要的事情重复O(玄学)遍

写完这题我整个人都不好了

一开始由于很无脑地用vector,结果死活卡在第7个点,无限TLE。

没办法看了下别人的,卧槽贪心+玄学?果然纯玄学过不去啊

于是改了一下,顺便优化了下常数就过了。

再也不写玄学题了QAQ

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#include<queue>
#include<ctime>
#include<cstdlib>
#define mk(i,j) make_pair(i,j)
using namespace std;
const int N=10000+5;
const int M=1000+5;
int v[N],rk[M],to[M],tmp[N],s[2][M],sum[M],belong[N],tag[N];
priority_queue<pair<int,int> >gold,gen;
int n,m;
int check(){
	for(int i=1;i<=m;i++)sum[i]=0;
	for(int i=1;i<=n;i++)sum[belong[i]]+=v[i];
	int mx=sum[1],mi=sum[1];
	for(int i=2;i<=m;i++)
	mx=max(mx,sum[i]),
	mi=min(mi,sum[i]);
	return mx-mi;
}
bool cmp1(int a,int b){
	return s[0][a]<s[0][b];
}
bool cmp2(int a,int b){
	return s[1][a]>s[1][b];
}
vector<int>mag[M];
int main(){
	//freopen("a.in","r",stdin);
	srand(time(0));
	int k;scanf("%d%d%d",&n,&m,&k);
	for(int i=1;i<=n;i++)scanf("%d",&v[i]);
	for(int i=1;i<=m;i++)gen.push(mk(-sum[i],i));
	for(int i=1;i<=n;i++)gold.push(mk(v[i],i));
	for(int i=1;i<=n;i++){
		int u=gen.top().second,t=gold.top().second;
		gen.pop();gold.pop();
		sum[u]+=v[t];belong[t]=u;
		gen.push(mk(-sum[u],u));
	}
	int ans;
	while((ans=check())>k){
		for(int i=1;i<=n;i++)tag[i]=rand()&1;
		for(int t=0;t<2;t++)
		for(int i=1;i<=m;i++)s[t][i]=0;
		for(int i=1;i<=n;i++)
		s[tag[i]][belong[i]]+=v[i];
		for(int t=0;t<2;t++){
			for(int i=1;i<=m;i++)rk[i]=i;
			if(t==0)sort(rk+1,rk+1+m,cmp1);
			else sort(rk+1,rk+1+m,cmp2);
			for(int i=1;i<=m;i++)to[rk[i]]=i;
			for(int i=1;i<=n;i++)
			if(tag[i]==t)tmp[i]=to[belong[i]];
		}
		for(int i=1;i<=n;i++)belong[i]=tmp[i];
	}
	printf("%d\n",ans);
	for(int i=1;i<=n;i++)mag[belong[i]].push_back(i);
	for(int i=1;i<=m;i++){
		for(int j=0;j<mag[i].size();j++)
		printf("%d ",mag[i][j]);
		putchar('\n');
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值