方格取数(number)

#include <bits/stdc++.h>
using namespace std;
    int n,m;
    int a[1005][1005];
    long long s[1005][1005],x[1005][1005],f[1005][1005];
int main(){
//    freopen("number.in","r",stdin);
  //  freopen("number.out","w",stdout);
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            scanf("%d",&a[i][j]);
        }
    }
    for(int i=1;i<=n;i++){
        f[i][1]=f[i-1][1]+a[i][1];
    }
    for(int j=2;j<m;j++){
        x[1][j]=f[1][j-1]+a[1][j];
        s[n][j]=f[n][j-1]+a[n][j];
        for(int i=2;i<=n;i++){
            x[i][j]=max(f[i][j-1],x[i-1][j])+a[i][j];
        }
        for(int i=n-1;i>=1;i--){
            s[i][j]=max(f[i][j-1],s[i+1][j])+a[i][j];
        }
        for(int i=1;i<=n;i++){
            f[i][j]=max(x[i][j],s[i][j]);
        }
    }
    if(m>1){
        f[1][m]=f[1][m-1]+a[1][m];
        for(int i=2;i<=n;i++){
            f[i][m]=max(f[i][m-1],f[i-1][m])+a[i][m];
        }
    }
    printf("%lld\n",f[n][m]);
    fclose(stdin);
    fclose(stdout);
    return 0;
}

下面是一个简单的 Python 代码实现方格问题的网络流解法: ```python from collections import deque # 定义网络流节点 class Node: def __init__(self, x, y, val): self.x = x self.y = y self.val = val self.in_edges = [] self.out_edges = [] # 定义网络流边 class Edge: def __init__(self, u, v, cap, flow): self.u = u self.v = v self.cap = cap self.flow = flow self.rev = None # 构建网络流图 def build_graph(grid): n = len(grid) m = len(grid[0]) nodes = [[None] * m for _ in range(n)] s = Node(-1, -1, 0) t = Node(-2, -2, 0) for i in range(n): for j in range(m): nodes[i][j] = Node(i, j, grid[i][j]) if (i + j) % 2 == 0: # 如果是偶行,向源点连边 e = Edge(s, nodes[i][j], nodes[i][j].val, 0) e.rev = Edge(nodes[i][j], s, 0, 0) e.rev.rev = e s.out_edges.append(e) nodes[i][j].in_edges.append(e) else: # 如果是奇行,向汇点连边 e = Edge(nodes[i][j], t, nodes[i][j].val, 0) e.rev = Edge(t, nodes[i][j], 0, 0) e.rev.rev = e t.in_edges.append(e) nodes[i][j].out_edges.append(e) if i > 0: # 向上连边 e = Edge(nodes[i][j], nodes[i-1][j], min(nodes[i][j].val, nodes[i-1][j].val), 0) e.rev = Edge(nodes[i-1][j], nodes[i][j], 0, 0) e.rev.rev = e nodes[i][j].out_edges.append(e) nodes[i-1][j].in_edges.append(e) if j > 0: # 向左连边 e = Edge(nodes[i][j], nodes[i][j-1], min(nodes[i][j].val, nodes[i][j-1].val), 0) e.rev = Edge(nodes[i][j-1], nodes[i][j], 0, 0) e.rev.rev = e nodes[i][j].out_edges.append(e) nodes[i][j-1].in_edges.append(e) return nodes, s, t # 计算最大流 def max_flow(nodes, s, t): total_flow = 0 while True: # 使用 BFS 寻找增广路径 q = deque() q.append(s) parent = {s: None} while q and t not in parent: u = q.popleft() for e in u.out_edges: if e.v not in parent and e.flow < e.cap: parent[e.v] = e q.append(e.v) for e in u.in_edges: if e.u not in parent and e.flow > 0: parent[e.u] = e.rev q.append(e.u) if t not in parent: break # 计算增广路径上的最小残量 path_flow = float("inf") v = t while v != s: e = parent[v] path_flow = min(path_flow, e.cap - e.flow if e.u == v else e.flow) v = e.u if e.u != v else e.v # 更新网络流 v = t while v != s: e = parent[v] if e.u == v: e.flow += path_flow else: e.flow -= path_flow v = e.u if e.u != v else e.v total_flow += path_flow return total_flow # 方格问题的解法 def max_sum(grid): nodes, s, t = build_graph(grid) max_flow(nodes, s, t) return sum(nodes[i][j].val for i in range(len(nodes)) for j in range(len(nodes[0])) if (i + j) % 2 == 0 and nodes[i][j] in s.out_edges) ``` 其中,`build_graph` 函用于构建网络流图,`max_flow` 函用于计算最大流,`max_sum` 函用于计算方格问题的最大和。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值