================================
分享一篇关于基于图神经网络的形状记忆合金马氏体变体识别方法的文章。
感谢论文的原作者!
关键词:
1. Shape memory alloys
2. Crystal variants
3. Graph neural networks
4. Microstructure
5. Visualization
================================
主要内容
“形状记忆合金 (SMA) 的详细微观结构演化可以通过分子动力学 (MD) 模拟来研究。然而,用于原子计算的传统后处理方法,例如共邻分析 (CNA),无法识别不同的晶体变体并揭示 SMA 中的孪生排列。目前的工作中,开发了一种基于GraphSAGE神经网络的强大而高效的后处理工具,它可以识别马氏体相变中的多个相,包括斜方相、单斜相和R相。该模型根据温度和应力诱发的马氏体相变 MD 计算结果进行训练。通过对训练数据集中未出现的情况的应用,例如不可恢复的纳米压痕过程,也验证了准确性和通用性。所提出的方法快速、准确,并且可以与任何 MD 模拟可视化工具集成。目前的工作成果预计将加快 SMA 及相关材料的原子研究步伐。”——取自文章摘要。
================================
================================
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
================================
================================
以上是我们分享的一些经验或者文章的搬运,或有不足,欢迎大家指出!
如有侵权,请联系我立马删除!
详细内容(文章题目、文章链接、附件下载)可在微 信 公 众 号:原子与分子模拟获取,欢迎大家关注。