洛谷P1164题解

思路

dp.

状态转移方程和别的题目不一样,我们需要求宣和不选这道菜的方案总数,不选的方案总数为dp[j],选的方案总数为dp[j-v[i]],所以dp[j]=dp[j]+dp[j-v[i]].这道题也要初始化dp[0]=1;

代码 

#include<bits/stdc++.h>
#define endl '\n';
using namespace std;
int v[130];
int T,n,dp[11100];int w[130];
int main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin>>n>>T;
	for(int i=1;i<=n;i++){
		cin>>v[i];
	}dp[0]=1;
	for(int i=1;i<=n;i++){
		for(int j=T;j>=v[i];j--){
			dp[j]+=dp[j-v[i]]; 
		}
	}cout<<dp[T];
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值