整理了27个Python人工智能库,码住哦~

本文介绍了Python人工智能领域的几个关键库:Numpy、OpenCV、Scikit-image,通过实例展示了它们在数组运算、图像处理和图像缩放等方面的优势。Numpy提供高效的数组计算,OpenCV实现图像滤镜,Scikit-image则包含丰富的图像处理函数。
摘要由CSDN通过智能技术生成

超级无敌干货,第一时间送达!!!

为了大家能够对人工智能常用的 Python 库有一个初步的了解,以选择能够满足自己需求的库进行学习,对目前较为常见的人工智能库进行简要全面的介绍。

1、Numpy

NumPy(Numerical Python) 是  Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库, Numpy 底层使用 C语言 编写,数组中直接存储对象,而不是存储对象指针,所以其运算效率远高于 纯Python代 码。

我们可以在示例中对比下 纯Python 与使用 Numpy库 在计算列表sin值的速度对比:
 

 

1、Numpy

NumPy(Numerical Python) 是  Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库, Numpy 底层使用 C语言 编写,数组中直接存储对象,而不是存储对象指针,所以其运算效率远高于 纯Python代 码。

我们可以在示例中对比下 纯Python 与使用 Numpy库 在计算列表sin值的速度对比:

import numpy as np
import math
import random
import time
 
start = time.time()
for i in range(10):
    list_1 = list(range(1,10000))
    for j in range(len(list_1)):
        list_1[j] = math.sin(list_1[j])
print("使用纯Python用时{}s".format(time.time()-start))
 
start = time.time()
for i in range(10):
    list_1 = np.array(np.arange(1,10000))
    list_1 = np.sin(list_1)
print("使用Numpy用时{}s".format(time.time()-start))
从如下运行结果,可以看到使用 Numpy 库的速度快于纯 Python 编写的代码:

使用纯Python用时0.017444372177124023s
使用Numpy用时0.001619577407836914s
2、OpenCV

OpenCV 是一个的跨平台计算机视觉库,可以运行在 Linux、Windows 和 Mac OS 操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时也提供了  Python 接口,实现了图像处理和计算机视觉方面的很多通用算法。

下面代码尝试使用一些简单的滤镜,包括图片的平滑处理、高斯模糊等:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('h89817032p0.png')
kernel = np.ones((5,5),np.float32)/25
dst = cv.filter2D(img,-1,kernel)
blur_1 = cv.GaussianBlur(img,(5,5),0)
blur_2 = cv.bilateralFilter(img,9,75,75)
plt.figure(figsize=(10,10))
plt.subplot(221),plt.imshow(img[:,:,::-1]),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(dst[:,:,::-1]),plt.title('Averaging')
plt.xticks([]), plt.yticks([])
plt.subplot(223),plt.imshow(blur_1[:,:,::-1]),plt.title('Gaussian')
plt.xticks([]), plt.yticks([])
plt.subplot(224),plt.imshow(blur_1[:,:,::-1]),plt.title('Bilateral')
plt.xticks([]), plt.yticks([])
plt.show()

3、Scikit-image

scikit-image 是基于 scipy 的图像处理库&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值