hdu6055_Regular polygon_暴力枚举

版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/no2015214099/article/details/76223670

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=6055


题意:

 给你n个点的坐标,坐标以整型输入,问所有的点能组成多少个正多边形。

解:

坐标都是整数输入,那么整数坐标能组成的正多边形只有正方形。

但正方形的位置是随意的。

让后我们会发现正方形可以分解为四个直角三角形。

如图:

然后,我们就能得到四个点的坐标关系:

接下来只需要暴力枚举(x,y)这个点,同时判定(x+y,y-x)和(y,-x)是否存在就行。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>

using namespace std;

bool a[410][410];
int main()
{
    int n,x,y;
    while(~scanf("%d",&n))

    {
        memset(a,false,sizeof(a));
        for(int i=0;i<n;i++)
        {
            scanf("%d%d",&x,&y);
            x+=100;y+=100;
            a[x][y]=true;
        }
        int sum=0;
        for(int i=0;i<202;i++)
        for(int j=0;j<202;j++)
        {
            if(a[i][j])
            {
                a[i][j]=0;
                for(int k=i;k<202;k++)
                {
                    for(int p=j+1;p<202;p++)
                    {
                        if(a[k][p])
                        {
                            int xx=k-i,yy=p-j;
                            if(a[i+yy][j-xx]&&a[i+xx+yy][j+yy-xx])
                            {
                                sum++;
                            }
                        }
                    }
                }
            a[i][j]=1;
            }
        }
    printf("%d\n",sum);
    }
    return 0;
}




阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页