# Really Big Numbers .

Ivan likes to learn different things about numbers, but he is especially interested in really big numbers. Ivan thinks that a positive integer number x is really big if the difference between x and the sum of its digits (in decimal representation) is not less than s. To prove that these numbers may have different special properties, he wants to know how rare (or not rare) they are — in fact, he needs to calculate the quantity of really big numbers that are not greater than n.

Ivan tried to do the calculations himself, but soon realized that it's too difficult for him. So he asked you to help him in calculations.

Input

The first (and the only) line contains two integers n and s (1 ≤ n, s ≤ 1018).

Output

Print one integer — the quantity of really big numbers that are not greater than n.

Examples

Input

12 1

Output

3

Input

25 20

Output

0

Input

10 9

Output

1

Note

In the first example numbers 10, 11 and 12 are really big.

In the second example there are no really big numbers that are not greater than 25(in fact, the first really big number is 30: 30 - 3 ≥ 20).

In the third example 10 is the only really big number (10 - 1 ≥ 9).

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;

ll f(ll x){
ll s = 0;
while(x){
s += x % 10;
x /= 10;
}
return s;
}
int main()
{
ll n,s; scanf("%I64d%I64d",&n,&s);
ll l = s,r = n;
while(l <= r){
ll mid = (l + r) >> 1;
if(mid - f(mid) >= s)
r = mid - 1;
else l = mid + 1;
}
if(r - f(r) >= s)        ///while 循环 结束后  l > r, 如果 r  满足条件, r 是最小的大数
printf("%I64d\n",n - r + 1);
else{
if(l - f(l) >= s) printf("%I64d\n",n - l + 1);     ///while 循环执行了，但是有可能 所有的mid 都并非 是大数， 需要判断一下
else printf("0\n");
}
return 0;
}