2019 牛客多校 第八场 A.All-one Matrices(极大子矩阵的个数,单调栈 + 前缀和)

戳我看题

题意:给一个01矩阵,问全是 1 且不被其他全是 1 的矩阵完全包含  的子矩阵的个数。

思路:和求最大全是 1 的子矩阵大小写法类似。想必都知道最大全是 1 的子矩阵大小这个问题是利用单调栈维护每一行为基底的高,其实每一次计算面积的时候,可以确定 左 右 上边界,也就是说  往 左 右 上 都是不可以在扩展的,所以只需要利用前缀和,就能 O(1) 的判断这个位置能否继续向下扩展,不能则 ans ++

Code:

#include<bits/stdc++.h>
#define debug(x) cout << "[" << #x <<": " << (x) <<"]"<< endl
#define pii pair<int,int>
#define clr(a,b) memset((a),b,sizeof(a))
#define rep(i,a,b) for(int i = a;i < b;i ++)
#define pb push_back
#define MP make_pair
#define LL long long
#define ull unsigned LL
#define ls i << 1
#define rs (i << 1) + 1
#define fi first
#define se second
#define CLR(a) while(!(a).empty()) a.pop()

using namespace std;
inline LL read() {
    LL s = 0,w = 1;
    char ch = getchar();
    while(!isdigit(ch)) {
        if(ch == '-') w = -1;
        ch = getchar();
    }
    while(isdigit(ch))
        s = s * 10 + ch - '0',ch = getchar();
    return s * w;
}
inline void write(LL x) {
    if(x < 0)
        putchar('-'), x = -x;
    if(x > 9)
        write(x / 10);
    putchar(x % 10 + '0');
}

const int maxn = 3100;
int pre[maxn][maxn];
char a[maxn][maxn];
int Hei[maxn][maxn];
int n,m;
stack<int>st;

void solve(){
    int ans = 0;
    for(int i = 1;i <= n;++ i){
        CLR(st);
        Hei[i][m + 1] = 0;
        for(int j = 1;j <= m + 1;++ j){
            if(st.empty() || Hei[i][st.top()] <= Hei[i][j]){
                st.push(j);
                continue;
            }
            int top;
            while(!st.empty() && Hei[i][st.top()] > Hei[i][j]){
                top = st.top(); st.pop();
                int rig = j - 1,lef = top;
//                printf("====>%d %d %d\n",top,lef,rig);
                if(Hei[i][lef - 1] < Hei[i][lef] && pre[i + 1][rig] - pre[i + 1][lef - 1] < rig - lef + 1)
                    ++ ans;
            }
            Hei[i][top] = Hei[i][j];
            st.push(top);
        }
    }
    write(ans); putchar('\n');
}

int main() {
//#ifndef ONLINE_JUDGE
//    freopen("in.txt", "r", stdin);
//    freopen("out.txt", "w", stdout);
//#endif
    n = read(),m = read();
    for(int i = 1;i <= n;++ i){
        for(int j = 1;j <= m;++ j){
            scanf(" %c",&a[i][j]);
            Hei[i][j] = (a[i][j] == '1' ? Hei[i - 1][j] + 1 : 0);
            pre[i][j] = pre[i][j - 1] + a[i][j] - '0';
        }
    }
    solve();
    return 0;
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值