目录
论文 Integrating Higher-Order Dynamics and Roadway-Compliance into Constrained ILQR-based Trajectory Planning for Autonomous Vehicles 介绍了当前基于 iLQR/DDP
的自动驾驶轨迹规划算法大多运用的是单车模型
或简单的线性模型
,这样对车辆运动学模型的粗略近似,对于微分动态规划等敏感度较高的优化算法来说,最终产生的轨迹不能很好的满足安全性和舒适性,使得实际工程化落地效果并不理想。
针对这种简单模型的局限性,文章引入了高阶运动学模型
,对约束的处理则运用了松弛的对数障碍函数
(relaxed logarithmic barrier function),基于该高阶运动学模型进行带约束的 iLQR
轨迹规划,能更好的表达和设计更为丰富多样的代价函数以及约束条件,最终在复杂场景下收到更好的效果。
高阶运动学模型
文章对车辆运动学模型引入了高阶控制项,状态量是 [ x , y , v , θ , a , κ , κ ˙ ] [x,y,v,\theta,a,\kappa,\dot{\kappa}] [x,y,v,θ,a,κ,κ˙],控制量是 [ j , κ ¨ ] [j,\ddot{\kappa}] [j,κ¨],其中:
- ( x , y , θ ) (x,y,\theta) (x,y,θ) 描述了车辆的二维坐标以及车辆的航向角。
- v v v 是车辆的纵向速度。
- a a a 是车辆的纵向加速度。
- κ \kappa κ 是车辆的曲率。
- κ ˙ \dot{\kappa} κ˙ 是车辆的曲率对时间 t t t 的一阶导。
- j j j 是纵向 jerk。
- κ ¨ \ddot{\kappa} κ¨ 是车辆的曲率对时间 t t t 的二阶导。
在每个离散的时间步 T r T_r Tr 内,假定 j j j 和 κ ¨ \ddot{\kappa} κ¨ 都是恒定的,则该时间步内走过的距离 S r = v 0 T r + 1 2 a 0 T r 2 + 1 6 j 0 T r 3 S_r = v_0T_r + \frac12a_0T_r^2+\frac16j_0T_r^3 Sr=v0Tr+21a0Tr2+61j0Tr3,平均曲率 κ ˉ = 1 T r ∫ 0 T r κ ( t ) d t = κ 0 + 1 2 κ ˙ 0 T r + 1 6 κ ¨ 0 T r 2 \bar{\kappa} = \frac{1}{T_r}\int_0^{T_r}\kappa(t)dt=\kappa_0+\frac12\dot{\kappa}_0T_r+\frac16\ddot{\kappa}_0T_r^2 κˉ=Tr1∫0Trκ(t)dt=κ0+21κ˙0Tr+61κ¨0T