SPFA&&畅通工程续

题目链接:点击打开链接

畅通工程续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 65164    Accepted Submission(s): 25206


Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 

Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 

Sample Output
2 -1
 
//SPFA算法
#include<stdio.h>
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
const int maxn=2e5+5;
//相当于一个二维数组E[i][j],里面存放pair<int,int>类型
vector<pair<int ,int> >E[maxn];
int d[maxn],inq[maxn];//记录是否在队列里

int n,m;

void init()
{
    for(int i=0;i<n;i++) d[i]=1e9;
    for(int i=0;i<n;i++) E[i].clear();
    for(int i=0;i<n;i++) inq[i]=0;
}
int main()
{
    while(cin>>n>>m)
    {
        init();
        for(int i=0;i<m;i++)
        {
           int x,y,z;
           cin>>x>>y>>z;
           E[x].push_back(make_pair(y,z));
           E[y].push_back(make_pair(x,z));

        }
        int s,t;
        cin>>s>>t;

        queue<int>Q;
        d[s]=0,inq[s]=1;
        Q.push(s);

        while(!Q.empty())
        {
            int now=Q.front();
            Q.pop();inq[now]=0;

            for(int i=0;i<E[now].size();i++)
            {
                int v=E[now][i].first;
                //???在E的二维数组中存放的 pair的第一个值 也就是目的地
                if(d[v]>d[now]+E[now][i].second)
                {
                    d[v]=d[now]+E[now][i].second;
                    if(inq[v]==1) continue;
                    inq[v]=1; //把最小并此时不在队里的的入队
                    Q.push(v);
                }
            }
        }
        if(d[t]==1e9) printf("-1\n");
        else printf("%d\n",d[t]);
    }
}


阅读更多

没有更多推荐了,返回首页