弗洛伊德(Floyd) 畅通工程续

题目链接:点击打开链接

畅通工程续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 65183    Accepted Submission(s): 25209


Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 

Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 

Sample Output
2 -1
//弗洛伊德(Floyd)&&邻接矩阵
#include<bits/stdc++.h>//万能的头文件
using namespace std;

const int maxn=2e3;
int m,n;
int mp[maxn][maxn];
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(i==j) mp[i][j]=0;
                else mp[i][j]=1e9;
            }
        }
        for(int i=0;i<m;i++)
        {
            int x,y,z;
            scanf("%d%d%d",&x,&y,&z);
            mp[x][y]=min(z,mp[x][y]);
            mp[y][x]=min(z,mp[y][x]);
        }
        int s,t;
        scanf("%d%d",&s,&t);

        for(int k=0;k<n;k++)
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                    mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);

        if(mp[s][t]==1e9) cout<<"-1"<<endl;
        else cout<<mp[s][t]<<endl;

    }
    return 0;
}


阅读更多
个人分类: Dijkstra&&Floyd&&SPFA
上一篇SPFA&amp;&amp;畅通工程续
下一篇二分&amp;&amp;Block Towers
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭