向量代数与空间解析几何
向量相关
方向角
一向量r与 x , y , z x,y,z x,y,z 轴正向的夹角 α 、 β 、 γ \alpha、\beta、\gamma α、β、γ 称为其方向角,方向角的余弦成为其方向余弦。
设 r=( x , y , z x,y,z x,y,z)
那么有
c o s α = x ∣ r ∣ , c o s β = y r , c o s γ = z r cos\alpha = \frac{x}{|r|}, cos\beta = \frac{y}{r}, cos\gamma = \frac{z}{r} cosα=∣r∣x,cosβ=ry,cosγ=rz
进而有
c o s 2 α + c o s 2 β + c o s 2 γ = 1 cos^2\alpha + cos^2\beta + cos^2\gamma = 1 cos2α+cos2β+cos2γ=1
投影
将向量 r 在 u u u 轴上的投影记为: p r j u r prj_ur prjur 或 ( r ) u (r)_u (r)u
设向量 r 与 u u u 轴正向的夹角为 θ \theta θ,则:
-
(a) u = ∣ a ∣ c o s θ _u = |a|cos\theta u=∣a∣cosθ
-
(a + b) u u u = (a) u _u u + (b) u _u u
向量积
c 为 a,b的向量积记为 c = a × \times × b.
c 满足:
- |c| = |a||b| s i n θ sin\theta sinθ
- c ⊥ \perp ⊥ a,c ⊥ \perp ⊥ b,且三者满足右手法则
右手法则:
右手四指指向a ,向b内旋,拇指方向为c的方向
向量积的性质
- a × \times ×a = 0
- a ∥ \parallel ∥ b ⇔ \Leftrightarrow ⇔ a × \times × b = 0
向量积的运算律
- 反交换律 :b × \times × a = − - −a × \times × b
- 分配律:(a + b) × \times × c = a × \times × c + a × \times × c
- 结合律:( λ \lambda λa) × \times × b = λ \lambda λ(a × \times × b)
向量积的坐标计算
a × \times × b = ∣ i j k a x a y a z b x b y b z ∣ \begin{vmatrix} i&j&k \\ a_x&a_y&a_z \\ b_x&b_y&b_z \end{vmatrix} iaxbxjaybykazbz
计算时可以写为
a y a z a x a y b y b z b x b y \begin{matrix} a_y&a_z&a_x&a_y \\ b_y&b_z&b_x&b_y \end{matrix} aybyazbzaxbxayby
交叉相乘可得到三个值,对应 i,j,k的参数
a y × b z − a z × b y a_y\times b_z - a_z \times b_y ay×bz−az×by
a z × b x − a x × b z a_z\times b_x - a_x \times b_z az×bx−ax×bz
a x × b y − a y × b x a_x\times b_y - a_y \times b_x ax×by−ay×bx
平面及其方程
方程
设平面的一个法向量为 n = ( A , B , C ) (A,B,C) (A,B,C)
一般方程
A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
点法式方程
该平面过点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)
则方程为
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0) = 0 A(x−x0)+B(y−y0)+C(z−z0)=0
截距式方程
设平面与 x , y , z x,y,z x,y,z 轴的交点为 a , b , c a,b,c a,b,c
则该方程为
x a + y b + z c = 1 \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 ax+by+cz=1
平面关系
设有两平面
Π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 \Pi_1:A_1x+B_1y+C_1z+D_1=0 Π1:A1x+B1y+C1z+D1=0
Π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 \Pi_2:A_2x+B_2y+C_2z+D_2=0 Π2:A2x+B2y+C2z+D2=0
其法向量为
n 1 = ( A 1 , B 1 , C 1 ) _1=(A_1,B_1,C_1) 1=(A1,B1,C1)
n 2 = ( A 2 , B 2 , C 2 ) _2=(A_2,B_2,C_2) 2=(A2,B2,C2)
则两面的夹角:
c o s θ = ∣ n 1 ⋅ n 2 ∣ ∣ n 1 ∣ ∣ n 2 ∣ cos\theta = \frac{|n_1·n_2|}{|n_1||n_2|} cosθ=∣n1∣∣n2∣∣n1⋅n2∣
特别的:
Π 1 ⊥ Π 2 ⇔ A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 \Pi_1\perp\Pi_2\Leftrightarrow A_1A_2+B_1B_2+C_1C_2=0 Π1⊥Π2⇔A1A2+B1B2+C1C2=0
Π 1 ∥ Π 2 ⇔ A 1 A 2 = B 1 B 2 = C 1 C 2 \Pi_1\parallel\Pi_2\Leftrightarrow \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} Π1∥Π2⇔A2A1=B2B1=C2C1
点面距离
设有平面 Π : A x + B y + C z + D = 0 \Pi:Ax+By+Cz+D=0 Π:Ax+By+Cz+D=0,点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)
则点到平面的距离为
∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 \frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} A2+B2+C2∣Ax0+By0+Cz0+D∣
直线及其方程
方程
一般方程
设直线 L 是平面 A 1 x + B 1 y + C 1 z + D 1 = 0 A_1x+B_1y+C_1z+D_1=0 A1x+B1y+C1z+D1=0 和 A 2 x + B 2 y + C 2 z + D 2 = 0 A_2x+B_2y+C_2z+D_2=0 A2x+B2y+C2z+D2=0的交线
那么可以写为
A 1 x + B 1 y + C 1 z + D 1 = 0 A_1x+B_1y+C_1z+D_1=0 A1x+B1y+C1z+D1=0
A 2 x + B 2 y + C 2 z + D 2 = 0 A_2x+B_2y+C_2z+D_2=0 A2x+B2y+C2z+D2=0
对称式方程
设直线的方向向量为 s = ( m , n , p ) s=(m,n,p) s=(m,n,p),且直线过点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)
那么对称式方程可以写为
x − x 0 m = y − y 0 n = z − z 0 p \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} mx−x0=ny−y0=pz−z0
参数式方程
对于对称式方程,设其比值为 t,那么就有
x = x 0 + m t x=x_0+mt x=x0+mt
y = y 0 + n t y=y_0+nt y=y0+nt
z = z 0 + p t z=z_0+pt z=z0+pt
直线关系
线线关系
设有直线:
L 1 : x − x 1 m 1 = y − y 1 n 1 = z − z 1 p 1 L_1:\frac{x-x_1}{m_1}=\frac{y-y_1}{n_1}=\frac{z-z_1}{p_1} L1:m1x−x1=n1y−y1=p1z−z1
L 2 : x − x 2 m 2 = y − y 2 n 2 = z − z 2 p 2 L_2:\frac{x-x_2}{m_2}=\frac{y-y_2}{n_2}=\frac{z-z_2}{p_2} L2:m2x−x2=n2y−y2=p2z−z2
方向向量分别为:s 1 _1 1,s 2 _2 2
设两线夹角为 θ \theta θ,则
c o s θ = ∣ s 1 ⋅ s 2 ∣ ∣ s 1 ∣ ∣ s 2 ∣ cos\theta=\frac{|s_1·s_2|}{|s_1||s_2|} cosθ=∣s1∣∣s2∣∣s1⋅s2∣
特别的:
L 1 ⊥ L 2 ⇔ m 1 m 2 + n 1 n 2 + p 1 p 2 = 0 L_1\perp L_2\Leftrightarrow m_1m_2+n_1n_2+p_1p_2=0 L1⊥L2⇔m1m2+n1n2+p1p2=0
L 1 ∥ L 2 ⇔ m 1 m 2 = n 1 n 2 = p 1 p 2 L_1\parallel L_2\Leftrightarrow \frac{m_1}{m_2}=\frac{n_1}{n_2}=\frac{p_1}{p_2} L1∥L2⇔m2m1=n2n1=p2p1
线面关系
设有直线和平面:
L : x − x 0 m = y − y 0 n = z − z 0 p L:\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} L:mx−x0=ny−y0=pz−z0
Π : A x + B y + C z + D = 0 \Pi:Ax+By+Cz+D=0 Π:Ax+By+Cz+D=0
方向向量: s = ( n , m , p ) s=(n,m,p) s=(n,m,p)
法向量: n = ( A , B , C ) n=(A,B,C) n=(A,B,C)
设线面夹角为 θ \theta θ,则
s i n θ = n ⋅ s ∣ n ∣ ∣ s ∣ sin\theta = \frac{n·s}{|n||s|} sinθ=∣n∣∣s∣n⋅s
特别的:
L ⊥ Π ⇔ A m = B n = C p L\perp \Pi\Leftrightarrow \frac{A}{m}=\frac{B}{n}=\frac{C}{p} L⊥Π⇔mA=nB=pC
L ∥ Π ⇔ A m + B n + C p = 0 L\parallel \Pi\Leftrightarrow Am+Bn+Cp=0 L∥Π⇔Am+Bn+Cp=0
点线距离
点线距离可利用公式 ∣ ∣ A P × d ∣ ∣ d ∣ ∣ |\frac{|AP \times d|}{|d|}| ∣∣d∣∣AP×d∣∣ 计算,其中,A为线上任一点,d 为直线方向向量。 A P × b AP\times b AP×b 求得的是 AP 与 d 构成的平行四边形的面积,除去 **d ** 的模后得到的就是高,即点线距离。
曲面及其方程
旋转曲面的方程
曲线所在坐标面 | 曲线方程 | 旋转轴 | 旋转曲面方程 |
---|---|---|---|
y o z yoz yoz | f ( y , z ) = 0 f(y,z)=0 f(y,z)=0 | z z z轴 | f ( ± x 2 + y 2 , z ) f(\pm\sqrt{x^2+y^2},z) f(±x2+y2,z) |
y o z yoz yoz | f ( y , z ) = 0 f(y,z)=0 f(y,z)=0 | y y y轴 | f ( y , ± x 2 + z 2 ) f(y,\pm\sqrt{x^2+z^2}) f(y,±x2+z2) |
x o z xoz xoz | f ( x , z ) = 0 f(x,z)=0 f(x,z)=0 | x x x轴 | f ( x , ± y 2 + z 2 ) f(x,\pm\sqrt{y^2+z^2}) f(x,±y2+z2) |
x o z xoz xoz | $f(x,z)=0 $ | z z z轴 | f ( ± x 2 + y 2 , z ) f(\pm\sqrt{x^2+y^2},z) f(±x2+y2,z) |
x o y xoy xoy | f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 | x x x轴 | f ( x , ± y 2 + z 2 ) f(x,\pm\sqrt{y^2+z^2}) f(x,±y2+z2) |
x o y xoy xoy | f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 | y y y轴 | f ( ± x 2 + z 2 , y ) f(\pm\sqrt{x^2+z^2}, y) f(±x2+z2,y) |
柱面
一直线 l l l 沿着曲线 C C C 平行移动形成的轨迹叫做柱面。其中, l l l 被称作母线、 C C C 被称作准线。
对于准线在 x o y xoy xoy 平面, l l l 平行于 z z z 轴的曲线,可以表示为:
F ( x , y ) = 0 F(x,y)=0 F(x,y)=0
z = 0 z=0 z=0