图论基础及相关模板

图论

图的存储

1. 直接存边

利用结构体,存每一条边的起点和终点以及它的权。

该方法遍历时效率较低,常用于Kurskal算法中。

例如:

struct node{
    int u;
    int v;
    int w;
}

2. 邻接矩阵

利用二维数组存边,以adj[i][j]表示从 i 到 j 的边的情况,可以使用 1 表示存在,也可以存储边权。

该方法查询效率高,但是空间开销大且不能存重边,常适用于稠密图。

3. 邻接表存图

适用情况更多,对于一个 i 存储其所链接的节点 j。

//声明
vector<int> adj[NUM];
//存边
adj[i].push_back(j);

4. 链式前向星

本质上是利用链表实现的邻接表

// 定义边的结构体
struct Edge {
    int to;       // 边的终点
    int weight;   // 边的权重
    int next;     // 下一条边的索引
};

Edge edges[MAXM]; // 存储所有边的数组
int head[MAXN];   // head[u] 表示节点 u 的第一条边的索引
int cnt = 0;      // 边的计数器

// 添加一条从 u 到 v 的边,权重为 w
void add_edge(int u, int v, int w) {
    edges[cnt].to = v;          // 记录边的终点
    edges[cnt].weight = w;      // 记录边的权重
    edges[cnt].next = head[u];  // 将新边插入到节点 u 的链表头部
    head[u] = cnt++;            // 更新节点 u 的第一条边的索引
}

该存图方式的关键点在于通过edges[cnt].next = head[u]head[u] = cnt++实现链表的延伸。遍历也是利用headnext实现的。

void traverse(int u) {
    for (int i = head[u]; i != -1; i = edges[i].next) {
        int v = edges[i].to;
        int w = edges[i].weight;
    }
}

并查集

并查集是一种用于管理元素所属集合的数据结构,实现为一个森林,其中每棵树表示一个集合,树中的节点表示对应集合中的元素。

顾名思义,并查集支持两种操作:

  • 合并(Union):合并两个元素所属集合(合并对应的树)

  • 查询(Find):查询某个元素所属集合(查询对应的树的根节点),这可以用于判断两个元素是否属于同一集合

    ​ ——oi wiki

洛谷P3367为例:

int arr[200010];

int find(int x){		//利用find函数寻找父节点并进行状态压缩
	if(x==arr[x]){
		return arr[x];
	}else  return arr[x] = find(arr[x]); //不断递归,直到找到父节点为自身的节点,即根节点
}

void join(int x, int y){	
	int tx = find(x);	//找到需加入的两节点的根节点
	int ty = find(y);
	if(tx != ty){		//如果根节点相同表示在树上,否则更新某一结点的根节点
		arr[ty] = tx;
	}
}

int main(){
	int n, m; cin >> n >> m;
	
	for(int i=1 ; i<=n ; ++i) arr[i]=i;
	
	for(int i=0 ; i<m ; ++i){
		int z, x, y;
		cin >> z >> x >> y;
		
		if(z==1){
			join(x,y);
		}else{
			if(find(x)==find(y)) cout << 'Y' << '\n';
			else cout << 'N' << '\n';
		}
	}
	
	return 0;
}

最小生成树

解决最小生成树常利用 Prim 或者 Kurskal。

Kurskal

该算法的本质是贪心,更适用于稀疏图。

基本思路:

  • 把边按照权值进行排序
  • 用贪心的思想优先选取权值较小的边,并依次连接
  • 若出现环则跳过此边(用并查集来判断是否存在环)继续搜,直到已经使用的边的数量比总点数少一。

洛谷P3367为例:

int n, m; 		// n 个节点,m 条边
int f[5010];	

struct line{
	int x, y, w;
}l[200010];//直接存边以便排序

bool cmp(line a, line b){ return a.w < b.w; } //用于sort函数的比较函数

int find(int x){
	if(x==f[x]) return f[x];	//基于状态压缩的并查集,用于检查是否成环
	else return f[x] = find(f[x]);
}


int kruskal(){		//核心代码
	
	int ans=0, cnt=0;
	for(int i=0 ; i<m ; ++i){
		int rtx = find(l[i].x);
		int rty = find(l[i].y);
		if(rtx == rty) continue;
		else{
			++cnt;
			ans += l[i].w;
			f[rtx] = rty;
		}
		if(cnt==n-1) return ans;
	}
	return 0;
}

单源最短路

Dijkstra

  1. 初始化
  • 距离数组:设置起点的距离为0,其他节点的距离为无穷大(∞)。

  • 优先队列:将起点及其距离(0)加入优先队列。

  1. 主循环

    • 取出最小距离节点:从优先队列中取出距离最小的节点(当前节点)。

    • 遍历邻居:遍历当前节点的所有邻居节点。

    • 更新距离:对于每个邻居节点,计算从当前节点到该邻居的新距离。如果新距离小于已知距离,则更新距离,并将该邻居节点及其新距离加入优先队列。

  2. 终止条件

    • 当优先队列为空时,算法结束。此时,距离数组中存储的即为从起点到各节点的最短距离。
typedef long long ll;
struct edge{
	ll w;
	int v;
};

class Compare{
	public:
		bool operator() (edge a, edge b) const {
			return a.w > b.w;
		}
};

int n, m, s; 				// 顶点数n,边数m,源点s
ll dist[100005]; 			//存储源点到每个点的距离
vector<edge> graph; 	//存储边权和顶点编号


void dijkstra(){
	for(int i=1 ; i<=n ; ++i) dist[i]=LLONG_MAX; 		   //将每个点的值变为无穷大
	dist[s] = 0;										//初始化源点
	
	priority_queue<edge, vector<edge>, Compare> pq;	    //建一个最小堆
    edge temp = {0,s};
	pq.push(temp);				//存入源点的信息
	
	while(!pq.empty()){									//形似BFS
		ll dis = pq.top().w;
		int u = pq.top().v;						//对于每一个节点,访问其邻居节点并更新距离
		pq.pop();
		
		if(dis > dist[u]) continue;
		for(int i=0 ; i<(int)graph[u].size() ; ++i){
			auto edge = graph[u][i];
			int v = edge.v;
			ll w = edge.w;
			if(dist[u] + w < dist[v]){
				dist[v] = dist[u]  + w;
                temp = {dist[v],v};
				pq.push(temp);
			}
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值