8.23练习感悟

6 篇文章 0 订阅
1 篇文章 0 订阅

想想距离开学不久了啊……
能好好写题的时间不多了啊……(表示报道就要晚自习,zym有毒……)
今天回顾了一下Tarjan算法
用这个算法求强连通分量、割顶和桥相信大家都会
可能大家对点双联通分量和边双连通分量比较陌生,但Tarjan照样可以求这个东西

概念

点双联通分量:删掉任意一点仍能保证连通性
边双连通分量:删掉任意一条边仍能保证连通性

分析

实际上,我们发现,点双就是没有割顶,边双就是没有桥
边双很好求吧,只要先找到桥,桥两端必然是两个边双,然后对每一个桥的两边处理一下即可
时间复杂度?  O(m)
下面我们来看一下点双:
我们记  dfni 表示  i 点的时间戳,  lowi 表示  i 点能到达的最小时间戳是多少
(这应该是Tarjan老套路了吧)
和Tarjan算法一样,可以用dfs来求
类似于强连通分量的求法???
用一个栈来记录当前的点双,栈里存点??
注意到,割顶属于多个点双
这似乎就不能用dfs来求了??
其实可以,我们只要在栈里记录边即可
如果出现栈顶的边和当前的边相同时,这个点双就真正求完了
点双的判定和割顶一样:
对于边  (u,v) ,若  dfnu<=lowv ,那么点  u 为割顶,即出现点双
代码(判点双的时候顺便把割顶也判了……)

#include<bits/stdc++.h>
#define PI pair<int,int>
#define mp make_pair
#define N 100010
using namespace std;
struct Edge{
    int next,num;
}e[5*N];
bool cut[N]; //判定割顶,cut[i]=true表示i是割顶
int Time,l,cnt,tot,num[N],dfn[N],low[N];
PI st[N];
vector<int> Point[N];//Point[i]表示第i个点双
void add(int x,int y){
    e[++cnt]=(Edge){e[x].next,y};
    e[x].next=cnt;
}
void tarjan(int x,int fa){
    dfn[x]=low[x]=++Time;
    int child=0;
    for(int p=e[x].next;p;p=e[p].next){
        int k=e[p].num;
        if(k==fa) continue;
        if(!dfn[k]){//如果k没有被访问过,那么就访问它,而且可能会出现点双和割顶
            st[++l]=mp(x,k);//将这条边加入栈
            child++;tarjan(k,x);
            low[x]=min(low[x],low[k]);
            if(low[k]>=dfn[x]){//出现割顶和点双
                cut[x]=true;tot++;
                while(true){//num[i]表示i点属于哪一个点双,割顶可能属于多个,就存编号最大的割顶
                    int u=st[l].first,v=st[l].second;
                    if(num[u]!=tot) Point[tot].push_back(u),num[u]=tot;//如果u不在点双中,将其加入点双,下面类似
                    if(num[v]!=tot) Point[tot].push_back(v),num[v]=tot;
                    l--;
                    if(u==x&&v==k) break;
                }
            }
        }else if(dfn[k]<dfn[x]){
            st[++l]=mp(x,k);
            low[x]=min(low[x],dfn[k]);
        }
    }
    if(fa==0&&child==1) cut[1]=false;//判断根是否为割顶
}
int main(){
    int n,m;
    scanf("%d%d",&n,&m);cnt=n;
    for(int i=1;i<=m;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        add(x,y);add(y,x);
    }
    for(int i=1;i<=n;i++)
        if(!dfn[i]){
            Time=0;l=0;
            tarjan(i,0);
        }
    for(int i=1;i<=tot;i++){
        printf("Point %d : \n",i);
        for(int j=0;j<Point[i].size();j++)
            printf(j==Point[i].size()-1?"%d\n":"%d ",Point[i][j]);//表示这边的代码比较鬼畜……用神奇的三目运算符来压行……
    }
    return 0;
}

边双我就不说了,比较简单

总结

赶紧趁这几天没开学好好写代码吧……

springboot034基于Springboot+Vue在线商城系统设计与开发毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值