想想距离开学不久了啊……
能好好写题的时间不多了啊……(表示报道就要晚自习,zym有毒……)
今天回顾了一下Tarjan算法
用这个算法求强连通分量、割顶和桥相信大家都会
可能大家对点双联通分量和边双连通分量比较陌生,但Tarjan照样可以求这个东西
概念
点双联通分量:删掉任意一点仍能保证连通性
边双连通分量:删掉任意一条边仍能保证连通性
分析
实际上,我们发现,点双就是没有割顶,边双就是没有桥
边双很好求吧,只要先找到桥,桥两端必然是两个边双,然后对每一个桥的两边处理一下即可
时间复杂度?
O(m)
下面我们来看一下点双:
我们记
dfni
表示
i
点的时间戳,
lowi
表示
i
点能到达的最小时间戳是多少
(这应该是Tarjan老套路了吧)
和Tarjan算法一样,可以用dfs来求
类似于强连通分量的求法???
用一个栈来记录当前的点双,栈里存点??
注意到,割顶属于多个点双
这似乎就不能用dfs来求了??
其实可以,我们只要在栈里记录边即可
如果出现栈顶的边和当前的边相同时,这个点双就真正求完了
点双的判定和割顶一样:
对于边
(u,v)
,若
dfnu<=lowv
,那么点
u
为割顶,即出现点双
代码(判点双的时候顺便把割顶也判了……)
#include<bits/stdc++.h>
#define PI pair<int,int>
#define mp make_pair
#define N 100010
using namespace std;
struct Edge{
int next,num;
}e[5*N];
bool cut[N]; //判定割顶,cut[i]=true表示i是割顶
int Time,l,cnt,tot,num[N],dfn[N],low[N];
PI st[N];
vector<int> Point[N];//Point[i]表示第i个点双
void add(int x,int y){
e[++cnt]=(Edge){e[x].next,y};
e[x].next=cnt;
}
void tarjan(int x,int fa){
dfn[x]=low[x]=++Time;
int child=0;
for(int p=e[x].next;p;p=e[p].next){
int k=e[p].num;
if(k==fa) continue;
if(!dfn[k]){//如果k没有被访问过,那么就访问它,而且可能会出现点双和割顶
st[++l]=mp(x,k);//将这条边加入栈
child++;tarjan(k,x);
low[x]=min(low[x],low[k]);
if(low[k]>=dfn[x]){//出现割顶和点双
cut[x]=true;tot++;
while(true){//num[i]表示i点属于哪一个点双,割顶可能属于多个,就存编号最大的割顶
int u=st[l].first,v=st[l].second;
if(num[u]!=tot) Point[tot].push_back(u),num[u]=tot;//如果u不在点双中,将其加入点双,下面类似
if(num[v]!=tot) Point[tot].push_back(v),num[v]=tot;
l--;
if(u==x&&v==k) break;
}
}
}else if(dfn[k]<dfn[x]){
st[++l]=mp(x,k);
low[x]=min(low[x],dfn[k]);
}
}
if(fa==0&&child==1) cut[1]=false;//判断根是否为割顶
}
int main(){
int n,m;
scanf("%d%d",&n,&m);cnt=n;
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
for(int i=1;i<=n;i++)
if(!dfn[i]){
Time=0;l=0;
tarjan(i,0);
}
for(int i=1;i<=tot;i++){
printf("Point %d : \n",i);
for(int j=0;j<Point[i].size();j++)
printf(j==Point[i].size()-1?"%d\n":"%d ",Point[i][j]);//表示这边的代码比较鬼畜……用神奇的三目运算符来压行……
}
return 0;
}
边双我就不说了,比较简单
总结
赶紧趁这几天没开学好好写代码吧……