离散数学
文章平均质量分 57
为应付离散数学期末考试而设
nonemeek
这个作者很懒,什么都没留下…
展开
-
离散期末之代数系统
PS:逆推,证等幂即X*X = X,那么题干中y = x*x,然后代入第一个式子中,得到结合律满足 PS问题:结合律怎么看 PS:运算个数相同,运算元数相同———同类型代数系统 PS: 先找到平凡子代数,再讨论剩下情况——先证明是代数系统,再证明含有相同代数常数 PS: PS: PS:ab的负一次方...原创 2022-06-11 20:58:12 · 857 阅读 · 1 评论 -
离散数学复习之集合与关系
PS:如果一个人握了n-1次手,那么他就与所有人除他自己外握手,那么不会有人没有握手 PS:集合子集个数为2的n次方个(真子集减1),另外不要与复合运算弄混 交集运算 并集运算 差运算 补集运算 对称差 PS:Notice: PS:P(A),A的子集集合 二式到三式只能证明必要性原因:x是A的子集或者是B的子集->x是A∪B的子集,反过来不能,因为x可能同时含原创 2022-06-11 16:43:34 · 863 阅读 · 0 评论 -
离散期末之逻辑推理及应用
PS: 添项 PS:一般结论含蕴含符号 PS:一般结论含符号非 应用案例(仅作了解)http://chrome-extension://ibllepbpahcoppkjjllbabhnigcbffpi/https://nos.netease.com/edu-lesson-pdfsrc/3645EFC40C7E66BB3F0B2256F0ECBD1F-1521019108143?download=%E5%91%BD%E9%A2%98%E9%80%BB%E8%BE%91%E5%BA%94%原创 2022-06-09 20:07:25 · 272 阅读 · 1 评论 -
离散期末之图和树
目录10.握手定理及其应用11.图的建模与应用 12.图的矩阵表示及应用12.欧拉图、哈密顿图应用 13.树的定义和应用、相关证明14.最小生成树及应用 15.哈夫曼树及哈夫曼编码 1.根据条件(握手次数不同,且配偶不握手),0~6次握手,6次与0次是夫妻,5次与1次是夫妻,以此类推,最后一对夫妻握手次数相同,由于只有问的人握手次数可以与配偶相同,故小张与妻子均握手三次。2.(阶数即顶点数) PS:简单图:不含平行边和自环的图。平行边:在无向图中,指连接于同一对结点间的多条边;在有向图中,指连接于同一对结原创 2022-06-07 22:18:01 · 434 阅读 · 0 评论