题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
解题思路:
通过递归,利用前序遍历为“根-左-右”、后序遍历为“左-根-右”的特点,在每一次递归中,将数组分为左子树,右子树,并按左子树的长度在前序遍历的树中得到该子树的前序遍历数组,递归结束条件为某子树的左右叶子节点中有空。
/**
* 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。 假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
* 例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
*
* 思路:使用递归
*/
public class RebuildBinaryTree {
// public static void main(String[] args) {
// int[] pre = {1,2,4,7,3,5,6,8};
// int[] in = {4,7,2,1,5,3,8,6};
// reConstructBinaryTree(pre, in);
// }
public static TreeNode reConstructBinaryTree(int[] pre, int[] in) {
if (pre.length == 0 || in.length == 0) {
return null;
}
TreeNode result = new TreeNode(pre[0]);
int key = 0; // 找到根节点在中序遍历中的位置
for (int i : in) {
if (i == pre[0]) {
break;
}
key++;
}
// 根据左右子树的长度划分数组
int[] preL = new int[key];
int[] inL = new int[key];
int[] preR = new int[pre.length - key-1];
int[] inR = new int[in.length - key-1];
for (int i = 0; i < key; i++) {
preL[i] = pre[i + 1];
inL[i] = in[i];
}
for (int i = 0; i <in.length - key-1; i++) {
preR[i] = pre[key + i+1];
inR[i] = in[key + i+1];
}
// 递归调用
result.left = reConstructBinaryTree(preL,inL);
result.right = reConstructBinaryTree(preR, inR);
return result;
}
public static class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
}
}