二叉树经典习题

  • 二叉树具有天然的递归结构

LeetCode 965. 单值二叉树

class Solution {
    public boolean isUnivalTree(TreeNode root) {
        // 节点数范围,可直接取根节点值
        int val = root.val;
        return dfs(root, val);
    }
    public boolean dfs(TreeNode node, int val) {
        if (node == null)
            return true;
        if (node.val != val)
            return false;
        return dfs(node.left, val) && dfs(node.right, val);
    }
}

LeetCode 257. 二叉树的所有路径

class Solution {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> ans = new ArrayList<String>();
        dfs(ans, "", root);
        return ans;
    }
    public void dfs(List<String> ans, String path, TreeNode node) {
        if (node != null) {
            StringBuffer pathSB = new StringBuffer(path);
            pathSB.append(Integer.toString(node.val));
            // 叶子节点
            if (node.left == null && node.right == null)
                ans.add(pathSB.toString());
            else {
                pathSB.append("->");
                dfs(ans, pathSB.toString(), node.left);
                dfs(ans, pathSB.toString(), node.right);
            }
        }
    }
}

LeetCode 113. 路经总和II

class Solution {
    List<List<Integer>> ans = new LinkedList<List<Integer>>();
    Deque<Integer> path = new LinkedList<Integer>();

    public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
        if (root == null)
            return ans;
        dfs(root, targetSum);
        return ans;
    }
    public void dfs(TreeNode node, int targetSum) {
        if (node == null)
            return;
        path.offerLast(node.val);
        targetSum -= node.val;
        if (node.left == null && node.right == null && targetSum == 0)
            ans.add(new LinkedList<Integer>(path));
        dfs(node.left, targetSum);
        dfs(node.right, targetSum);
        path.pollLast();
    }
}

LeetCode 563. 二叉树的坡度

class Solution {
    int ans;
    public int findTilt(TreeNode root) {
        ans = 0;
        dfs(root);
        return ans;
    }
    public int dfs(TreeNode node) {
        if (node == null)
            return 0;
        int left_sum = dfs(node.left);
        int right_sum = dfs(node.right);
        // 整个树 的坡度就是其所有节点的坡度之和
        ans += Math.abs(left_sum - right_sum);
        return left_sum + right_sum + node.val;
    }
}

LeetCode 687. 最长同值路径

class Solution {
    int ans;
    public int longestUnivaluePath(TreeNode root) {
        ans = 0;
        if (root == null)
            return 0;
        dfs(root);
        return ans;
    }
    public int dfs(TreeNode node) {
        if (node == null)
            return 0;
        int left = dfs(node.left);
        int right = dfs(node.right);
        if (node.left != null && node.left.val == node.val)
            left = left + 1;
        else
            left = 0;
        if (node.right != null && node.right.val == node.val)
            right = right + 1;
        else
            right = 0;
        ans = Math.max(ans, left+right);
        return Math.max(left, right);
    }
}

LeetCode 124. 二叉树中的最大路径和

class Solution {
    int ans;
    public int maxPathSum(TreeNode root) {
        ans = Integer.MIN_VALUE;
        dfs(root);
        return ans;
    }
    public int dfs(TreeNode node) {
        if (node == null)
            return 0;
        int left = Math.max(dfs(node.left), 0);
        int right = Math.max(dfs(node.right), 0);
        ans = Math.max(ans, node.val+left+right);
        return node.val + Math.max(left, right);
    }
}
本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作与持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性与丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块与dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始人脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的人脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间与闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参数调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制与性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uri · Boyka

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值