题意:在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,n<=5e4,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
斜率相同的 只保留截距大的.剩下的按斜率从小到大排序.
若斜率小的i和斜率大的j交点为(x,y) 则在(-inf,x]直线i盖住j,在[x,inf)直线j盖住i.
用栈来维护 求出当前待插入点和栈点交点x坐标,以及栈顶和次栈顶交点的x坐标来确定栈顶是否被覆盖.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,n<=5e4,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
斜率相同的 只保留截距大的.剩下的按斜率从小到大排序.
若斜率小的i和斜率大的j交点为(x,y) 则在(-inf,x]直线i盖住j,在[x,inf)直线j盖住i.
用栈来维护 求出当前待插入点和栈点交点x坐标,以及栈顶和次栈顶交点的x坐标来确定栈顶是否被覆盖.
答案是正确的,因为最后栈中的直线形成一个斜率递增的半凸包.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double eps=1e-8;
const int N=5e4+20;
struct data{
double a,b;
int id;
}l[N];
int n;
bool cmp(data a,data b)
{
if(fabs(a.a-b.a)<eps)
return a.b<b.b;
return a.a<b.a;
}
data s[N];
int top;
double crossx(data a,data b)
{
return (b.b-a.b)/(a.a-b.a);
}
void insert(data a)
{
while(top)
{
if(fabs(s[top].a-a.a)<eps)
top--;
else if(top>1&&crossx(a,s[top])<=crossx(s[top],s[top-1]))
top--;
else
break;
}
s[++top]=a;
}
int ans[N];
void work()
{
for(int i=1;i<=n;i++)
insert(l[i]);
for(int i=1;i<=top;i++)
ans[s[i].id]=1;
for(int i=1;i<=n;i++)
if(ans[i]) printf("%d ",i);
printf("\n");
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf%lf",&l[i].a,&l[i].b),l[i].id=i;
sort(l+1,l+1+n,cmp);
work();
return 0;
}