HDU 5889 Barricade 最短路+最小割

题意:n点m条边的图,每条边长度都为1,堵住第i条边需要代价w[i],敌人每次从n走到1都走最短路.
n为源点,1为汇点,把n-1最短路上的边加到网络流的图中,容量为堵住这条边的代价,则求s-t的最小割 等价于求最大流
d[u]<=d[v]+w 若d[v]+w==d[u] 则说明边(v,u)在s出发到某点最短路上,

有些不在s-t最短路上的边可能也会被加入(但不影响,因为沿着该边最后一定无法到t)

#include <bits/stdc++.h>
using namespace std;
const int N=2e3+20,inf=0x3f3f3f3f;
struct node
{
    int v,w;
    node(int vv,int ww):v(vv),w(ww){};
};
vector<node>e[N];
int s,t,n,m,vs,vt;
int d[N];
int vis[N];
void SPFA()
{
    memset(vis,0,sizeof(vis));
    for(int i = 1;i<=n;i++)
        d[i]=inf;
    d[s]=0;
    queue<int>q;
    q.push(s);
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u]=0;
        for(int i = 0;i<e[u].size();i++)
        {
            int v = e[u][i].v;
            if(d[v]>d[u]+1)
            {
                d[v]=d[u]+1;
                if(!vis[v])
                    q.push(v);
                vis[v]=1;
            }
        }
    }
}
struct Edge
{
    int from,to,cap,flow;
    Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic
{
    int s,t;
    vector<Edge>edges;
    vector<int> G[N];
    bool vis[N];
    int d[N];
    int cur[N];
    void init()
    {
       for (int i=0;i<=n+1;i++)
           G[i].clear();
       edges.clear();
    }
    void AddEdge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        int mm=edges.size();
        G[from].push_back(mm-2);
        G[to].push_back(mm-1);
    }
    bool BFS()
    {
        memset(vis,0,sizeof(vis));
        queue<int>q;
        q.push(s);
        d[s]=0;
        vis[s]=1;
        while (!q.empty())
        {
            int x = q.front();q.pop();
            for (int i = 0;i<G[x].size();i++)
            {
                Edge &e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to]=1;
                    d[e.to] = d[x]+1;
                    q.push(e.to);
                }
            }
        }
        return vis[t];
    }

    int DFS(int x,int a)
    {
        if (x==t || a==0)
            return a;
        int flow = 0,f;
        for(int &i=cur[x];i<G[x].size();i++)
        {
            Edge &e = edges[G[x][i]];
            if (d[x]+1 == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0)
            {
                e.flow+=f;
                edges[G[x][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if (a==0)
                    break;
            }
        }
        return flow;
    }

    int Maxflow(int s,int t)
    {
        this->s=s;
        this->t=t;
        int flow = 0;
        while (BFS())
        {
            memset(cur,0,sizeof(cur));
            flow+=DFS(s,inf);
        }
        return flow;
    }
}DC;
int main()
{
	int T,u,v,w;
	cin>>T;
	while(T--)
	{
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++)
			e[i].clear();
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d%d",&u,&v,&w);
			e[u].push_back(node(v,w));
			e[v].push_back(node(u,w));
		}
		s=n,t=1;
		SPFA();
		DC.init();
		for(int i=1;i<=n;i++)
			for(int j=0;j<e[i].size();j++)
				if(d[e[i][j].v]==d[i]+1)
					DC.AddEdge(i,e[i][j].v,e[i][j].w);
		printf("%d\n",DC.Maxflow(s,t));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值