题意:给出n个点(x,y)并且n个点包括了(0,0)->(max_x,max_y)内的所有的点
定义一个点(x,y)的价值s(x,y)=y-x. 现在有价值序列w[i].
现在将n个点按照价值来分配,若点(x,y)对应w[i],则所有x'>x&&y'>y对应的w下标要>i.
n<=1e5. 0<=x,y<=1e5.问这n个点是否能按上述规则分配.若能则输出方案.
先将坐标排序 由于本题n个点是连续的.
所以将(x,y)指向(x,y-1),(x-1,y),则可以构成一个DAG
每个节点由前驱节点更新出它早能开始匹配的下标k.
定义一个点(x,y)的价值s(x,y)=y-x. 现在有价值序列w[i].
现在将n个点按照价值来分配,若点(x,y)对应w[i],则所有x'>x&&y'>y对应的w下标要>i.
n<=1e5. 0<=x,y<=1e5.问这n个点是否能按上述规则分配.若能则输出方案.
先将坐标排序 由于本题n个点是连续的.
所以将(x,y)指向(x,y-1),(x-1,y),则可以构成一个DAG
每个节点由前驱节点更新出它早能开始匹配的下标k.
然后用set在[k,n]中找到第一个w[i]=y-x的i(显然越早配越好)..并更新出当前节点匹配的位置即可
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;
struct node{
int x,y,st;
int id;
}p[N];
map<int,int> mk[N];
set<int> s[2*N+20];
int n,w[N],res[N];
bool cmp(node a,node b)
{
if(a.x==b.x)
a.y<b.y;
return a.x<b.x;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>p[i].x>>p[i].y;
p[i].x++,p[i].y++;
}
sort(p+1,p+1+n,cmp);
for(int i=1;i<=n;i++)
{
cin>>w[i];
mk[p[i].x][p[i].y]=i;
s[w[i]+N].insert(i);
}
bool flag=true;
for(int i=1;i<=n;i++)
{
int q1=mk[p[i].x-1][p[i].y];
int q2=mk[p[i].x][p[i].y-1];
p[i].st=0;
if(q1)
p[i].st=max(p[i].st,p[q1].id+1);
if(q2)
p[i].st=max(p[i].st,p[q2].id+1);
//找到k属于[p[i].st ->n ] 使得 w[k]=p[i].y-p[i].x
int val=p[i].y-p[i].x+N;
auto it=s[val].lower_bound(p[i].st);
// printf("%d %d %d\n",i,p[i].st,(*it));
if(it!=s[val].end())
{
p[i].id=*it;
res[*it]=i;
s[val].erase(it);
}
else
{
flag=false;
break;
}
}
if(flag)
{
cout<<"YES"<<'\n';
for(int i=1;i<=n;i++)
cout<<p[res[i]].x-1<<' '<<p[res[i]].y-1<<'\n';
}
else
puts("NO");
return 0;
}