CF 961D Pair Of lines 思维,共线

该博客探讨了CF 961D问题中的关键思维,主要集中在如何判断点是否位于给定的两条线段(a, b)或(c, i)上,通过对几何原理的运用,解析问题的解决策略。" 111189483,9809996,Python Plotly绘制地图与3D图像指南,"['可视化', 'Python', '数据可视化']
摘要由CSDN通过智能技术生成
题意:二维平面上有n个不同的点(x,y),问是否能画两条直线 使得所有点都至少在其中一条直线上.
n<=1e5, -1e9<=x,y<=1e9.


先找到三个不共线的点a,b,c 因为只能画两条直线,所以a,b,c三点间必须画一条直线.三种情况(a,b),(a,c),(b,c) 

画完这条线(a,b)以后,判断剩下的点是否在(a,b) 或者在(c,i)上即可.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+5;
ll n,x[N],y[N],p3=-1;
bool flag=false;
void check(int a,int b,int c)
{
	int d=-1,cnt=0;
	for(int i=3;i<=n;i++)
	{
		if(i==p3)	continue;
		if((y[i]-y[a])*(x[b]-x[a])==(y[b]-y[a])*(x[i]-x[a]))
			cnt++;
		else
		{
			if(d==-1)
				d=i,cnt++;
			else if((y[i]-y[c])*(x[d]-x[c])==(y[d]-y[c])*(x[i]-x[c]))
				cnt++;
		}
	}
	//cout<<cnt<<'\n';
	flag|=(cnt==n-3);	
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin>>n;
	for(int i=1;i<=n;i++
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值