题意:定义一个区间的价值为:这个区间内的数AND的值 * 这个区间的数OR运算的值.
n<=1e5,a[i]<=1e9 . 求序列a所有区间价值和 % 1e9+7.
固定L,增加R,与运算的结果非递增,或运算的结果非递减.并且最多变化log(max(a[i]))=32次.
方便模拟 用vector d[j]记录二进制第j位为1的下标, 找a[i]的变化值 只要枚举j之后,在d[j]二分第一个比i大的下标即可.
n<=1e5,a[i]<=1e9 . 求序列a所有区间价值和 % 1e9+7.
固定L,增加R,与运算的结果非递增,或运算的结果非递减.并且最多变化log(max(a[i]))=32次.
方便模拟 用vector d[j]记录二进制第j位为1的下标, 找a[i]的变化值 只要枚举j之后,在d[j]二分第一个比i大的下标即可.
以i为左端点 分别求出两个运算变化的右端点模拟..O(n*log^2(a[i]))
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+5,mod=1e9+7,M=32;
ll n,a[N];
vector<ll> d[M],e[M];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
for(int j=0;j<M;j++)
if((a[i]>>j)&1)
d[j].push_back(i);
else
e[j].push_back(i);
}
ll res=0;
for(int i=1;i<=n;i++)
{
vector<ll> b,c;
for(int j=0;j<M;j++)
{
if(!((a[i]>>j)&1))
{
int idx=lower_bound(d[j].begin(),d[j].end(),i)-d[j].begin();
if(idx<d[j].size())
b.push_back(d[j][idx]);
}
else
{
int idx=lower_bound(e[j].begin(),e[j].end(),i)-e[j].begin();
if(idx<e[j].size())
c.push_back(e[j][idx]);
}
}
sort(b.begin(),b.end());
sort(c.begin(),c.end());
b.erase(unique(b.begin(),b.end()),b.end());
c.erase(unique(c.begin(),c.end()),c.end());
ll j=0,p=0,yu=a[i],huo=a[i],ls=i;
while(j<b.size()&&p<c.size())
{
if(b[j]>c[p])
{
res=(res+((huo*yu)%mod*(c[p]-ls))%mod)%mod;
yu&=a[c[p]];
ls=c[p];
p++;
}
else
{
res=(res+((huo*yu)%mod*(b[j]-ls))%mod)%mod;
huo|=a[b[j]];
ls=b[j];
j++;
}
}
while(j<b.size())
{
res=(res+(((yu*huo)%mod)*(b[j]-ls))%mod)%mod;
huo|=a[b[j]];
ls=b[j];
j++;
}
while(p<c.size())
{
res=(res+(((yu*huo)%mod)*(c[p]-ls))%mod)%mod;
yu&=a[c[p]];
ls=c[p];
p++;
}
if(ls<=n)
res=(res+((n-ls+1)*((yu*huo)%mod))%mod)%mod;
}
printf("%lld\n",res);
return 0;
}
mark..
点击打开链接