CF 984 C. Finite or not? 数学(有限小数)

题意:Q次询问,每次给出(p,q,b) 问p/q在b进制表示下,是否是一个无限小数?
Q<=1e5, 2<=p,q,b<=1e18

先把p/q化为最简分数.
若p/q为有限小数,那设小数点后有k位.
在b进制下 p*b^k/q 为整数 因为gcd(p,q)=1 所以 q|b^k

从素因子角度来看 q的所有素因子都在b的所有素因子内.

不断将q除以gcd(q,b) 若最后q不为1 说明q中有和b不同的素因子,q|b^k不成立.为无限小数.

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
	return b==0?a:gcd(b,a%b);
}
ll p,q,b;
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	int Q;
	cin>>Q;
	while(Q--)
	{
		cin>>p>>q>>b;
		ll d=gcd(p,q);
		p/=d,q/=d;
		while(b<=1e18/b)
			b*=b;
		while(true)
		{
			ll d=gcd(q,b);
			if(d==1)
				break;
			if(b<=2e18/d)
				b*=d;
			q/=d;	
		} 
		if(q==1)
			cout<<"Finite"<<'\n';		
		else
			cout<<"Infinite"<<'\n';
	}
	return 0;
}


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页