机器学习
猿说猿道
曾在华为工作7年,先后担任软件工程师、项目经理
展开
-
Python人工智能逻辑回归算法原理和实现(概率统计、信息论信息熵、梯度下降)
1、假设,线性线的函数是:f(x) = θ0+θ1*x11 + θ2*x12传说中的激活函数,将数值转换为概率值:sigmoid,relu 函数:g(z) = 1/(1+e(-z)) # e=2.718z = f(x)# 逻辑回归问题的假设函数:h(x) = 1/(1+e^(-(θ0+θ1*x11 + θ2*x12)))[0, 1] 0.5为分界线 >= 0.7 ...原创 2019-11-12 15:06:24 · 689 阅读 · 1 评论 -
Python手写实现梯度下降算法(核心是求极值,必须是凸函数),使用matplotlib绘制过程图
1、什么是梯度下降:梯度就是函数在一个点的斜率,梯度下降,就是在求函数极值的过程中,让斜率减小,从而找到极大值或极小值点,因为在几何坐标系里,极值点的斜率是零# 梯度下降 == 导数值下降import matplotlib.pyplot as pltimport numpy as np# f(x) = (x-10)**2, 目标函数# f'(x) = 2*x - 20 梯度函...原创 2019-10-17 17:24:22 · 1849 阅读 · 0 评论 -
Python纯手写版本的KMeans算法实现,没有使用numpy库,使用matplotlib可视化测试
Python纯手写版本的KMeans算法实现,没有使用numpy库,使用matplotlib可视化import randomimport matplotlib.pyplot as pltclass KMeans():def __init__(self, k=1): ''' :param k: k代表分类数 ''' self.__k = k self....原创 2019-08-12 17:11:30 · 1682 阅读 · 2 评论