Jeff Dean的Learned Index为数据库索引带来了哪些启发1

Learned Index是一种利用机器学习优化传统数据库索引的技术,通过掌握数据分布特性,改进B-Tree Index,实现更快的查询速度和更高的存储效率。在测试中,相对于B-Tree,Learned Index的RM-Index模型性能提升60%~70%,存储空间节省高达99%。这种递归模型考虑了全局数据分布,并通过有限步迭代定位数据,降低了错误率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇论文在两个月前刚被公布出来的时候,因为带着Jeff Dean的署名曾一度被热传,但直到今天才认真读完这篇论文。Learned Index基于机器学习的方法,对传统数据库索引做了改造。本文先介绍Learned Index的RM-Index模型以及与B-Tree索引的对比。


如论文开篇所言,可以将传统的数据库索引(Index)视为一种模型(Model):

  • B-Tree索引B-Tree索引模型将一个Key映射到一个排序数组中的某位置所对应的记录
  • Hash索引Hash索引模型将一个Key映射到一个无序数组中的某位置所对应的记录
  • Bitmap索引Bitmap索引模型用来判断一条记录是否存在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值