两个有序数组的中位数

本文介绍了如何利用二分法解决LeetCode中的寻找两个有序数组中位数的问题,时间复杂度为O(log(min(n, m)))。通过确保元素数量相等并满足最大值小于等于最小值的条件,将问题转化为在其中一个数组中进行二分查找。文章还提到了四种特殊情况及代码实现。" 106973372,9542749,CMD命令详解与实践指南,"['CMD', 'DOS', '网络管理', '系统维护', '命令行工具']
摘要由CSDN通过智能技术生成

第一次写文章,希望大家可以给我一点建议、留言,谢谢。

问题:

leetCode问题:求两个有序数组的中位数,时间复杂度要求 O( log(n+m) )

思路

下面是我自己的一种理解(来源于代码),自认为这种理解比较简单。
1.归并思想
这种算法比较容易理解,只需要计算出前面 (n + m + 1)/ 2 个就行了,不需要多说。不过不符合时间复杂度的要求。
2.二分法 / 折半查找
先说一下中位数,中位的把数组分为两个元素数量相等的两部分,并且左边最大值一定 <= 右边最小值。对于这道题,我们假设找到中位数后,一定会出现下面的情况:
在这里插入图片描述
红线分开的两边元素个数相等,并且Max( A[i-1], B[j-1 ]) <= Min(A[i], B[j]); i和j是下标
所以,我们完全可以把这个问题转化成:二分法查找有序数组里符合要求的数。
这个要求就是:
(1)两边元素数量各占一半,即 half = (n + m + 1) / 2; // n 和 m 为两个数组的长度。
(2)Max(A[i-1], B[j-1]) <= Min(A[i], B[j]);

条件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值