数据挖掘
notheory
这个作者很懒,什么都没留下…
展开
-
集成学习
以往的课程中很少涉及到集成学习,最近刚开始接触。其实就现在对集成学习模糊的了解,感觉上是一个很实用且强大的思想方法。今天看了bagging和boosting,乍一看感觉完全是一个意思,都是多次采样形成多个弱分类器,最后由这些弱分类器形成强分类器,以提高分类效果。不过刚刚看了一篇博文,才了解到bagging和boosting最大的区别其实在于hard和soft。bagging是通过h原创 2016-04-13 16:41:46 · 537 阅读 · 0 评论 -
随机之美——机器学习中的随机森林模型
原文链接见:点击打开链接01 树与森林在构建决策树的时候,可以让树进行完全生长,也可以通过参数控制树的深度或者叶子节点的数量,通常完全生长的树会带来过拟合问题。过拟合一般由数据中的噪声和离群点导致,一种解决过拟合的方法是进行剪枝,去除树的一些杂乱的枝叶。注:你可能需要参考前面的文章:《0x0B 菩提决策树,姻缘算法求》实际应用中,一般可用随机森林来代替,随机森林转载 2016-04-16 19:02:30 · 5029 阅读 · 0 评论