Office 2021 下载安装超详细保姆级教程(附安装包)【2025最新】

大家好!本文将分步骤介绍Office 2021的安装方法,这是一份详细的指南,旨在帮助大家顺利完成安装。Office是常用的办公软件,无论学生还是职场人都需要用到。下面,我们将一步步教您如何安装Office 2021专业增强版。

Office 2021相比之前的版本带来了多项显著提升和新功能:

  1. 全新视觉刷新体验 - Office 2021采用了现代化的Fluent Design设计语言,界面更加简洁明了,视觉元素更加协调一致。新版本支持深色模式,可以与Windows系统主题完美匹配,减轻长时间办公的视觉疲劳!!!

  2. 强大的协作功能 - 你和你的同事可以打开并同时编辑同一个文档,这就是所谓的"协同编辑"。当你协同编辑时,可以实时看到彼此的修改,让团队协作效率直线上升。

  3. Office高级创意内容库 - 微软不断为Office Premium创意内容集合添加更丰富的媒体内容,包括精心策划的股票图片、图标等,帮助你更好地表达自己的创意想法。

  4. 智能搜索功能 - 在Windows版Office应用的顶部,你会发现全新的Microsoft搜索框。这个强大的工具可以帮助你快速查找所需内容,例如文本、命令、帮助等。

  5. 专注阅读模式 - 在Word中可以逐行浏览文档,没有任何干扰。你可以调整焦点,一次查看一行、三行或五行内容(特别适合长文档阅读)。

  6. 全新绘图功能 - 通过新的绘图选项卡添加,简化墨迹工作方式:点擦除器、标尺和套索工具,让你的创意表达更加轻松自如!

  7. 辅助功能检查器 - 辅助功能检查器会监控你的文档,当发现需要注意的问题时,会在状态栏中提醒你,确保你的文档对所有人都易于访问。

Office 2021还加强了云端存储和智能功能的整合,让你可以随时随地访问和编辑文档,提高办公灵活性。同时,新版本的安全性能也得到了全面提升,更好地保护你的数据和隐私安全。

第一部分:了解Office 2021

简单来说,Microsoft Office是微软出品的一套办公软件,包括Word、Excel、PowerPoint等常用工具,运行在Windows系统上。它最早出现在90年代,是将多个软件打包销售。Office 2021是较新版本,界面和功能都有所改进,特别加强了协同工作和云服务,有助于提高工作效率。

第二部分:Office 2021安装步骤详解

现在开始核心步骤,请严格按照以下顺序操作来安装Office 2021:

步骤一:解压安装包。找到下载好的Office安装包文件,鼠标右键点击它,选择解压到当前文件夹,并命名为"office 2021"(您可以选择任意存放位置)。

提示:相关的资料包可在文末获取。

在这里插入图片描述

步骤二:打开Setup文件夹。解压完成后,进入刚刚创建的"office 2021"文件夹,找到并双击打开名为【Setup】的子文件夹。

在这里插入图片描述

步骤三:运行安装程序。在【Setup】文件夹内,找到名为"Office_2021"的应用程序图标,双击它开始安装。

在这里插入图片描述

步骤四:使用管理员权限运行。出现安装界面后,请找到Setup文件,用鼠标右键点击它,然后选择“以管理员身份运行”。(注意:必须用管理员权限,否则可能安装失败)。

在这里插入图片描述

步骤五:等待安装过程。软件会自动进行安装,这个过程可能需要几分钟,请耐心等待,不要关闭窗口或进行其他中断操作。

在这里插入图片描述

步骤六:完成安装。当看到安装完成的提示后,点击“关闭”按钮。

在这里插入图片描述

步骤七:打开配置工具文件夹。返回到第一步解压出的"office 2021"主文件夹,找到并双击打开箭头指向的文件夹。

在这里插入图片描述

步骤八:运行配置工具。在此文件夹中,找到配置程序(可能名为HEU…或类似名称),鼠标右键点击它,选择“以管理员身份运行”。

重要提示:如果文件夹里是空的,可能是配置工具被安全软件误删了。请先暂时关闭电脑上的杀毒软件,然后重新解压安装包,再回到这一步操作。

在这里插入图片描述

步骤九:开始最终配置。在打开的配置工具窗口中,点击“开始”或类似的按钮。

在这里插入图片描述

步骤十:等待配置完成。系统会自动完成最后的设置,这通常很快,请稍等片刻。

在这里插入图片描述

步骤十一:确认配置成功。当看到成功提示信息时,点击“确定”。

在这里插入图片描述

步骤十二:启动Office软件。现在可以从电脑的开始菜单中找到并打开Office程序了,例如,我们可以打开Word来检查一下。

在这里插入图片描述

步骤十三:检查产品状态。打开Word后,点击界面左下角的“账户”选项。在右侧的产品信息下查看状态。如果显示产品已配置好或类似信息,说明安装成功。

在这里插入图片描述

步骤十四:完成。至此,Office 2021的所有安装和配置步骤都已完成,您可以开始使用了。

本教程相关资料链接:


[https://pan.xunlei.com/s/VOP47ZPhpZRxvQfBcajHPQp_A1?pwd=4vfu#](https://pan.xunlei.com/s/VOP47ZPhpZRxvQfBcajHPQp_A1?pwd=4vfu#)

第三部分:总结

希望通过以上详细的分步指南,您已成功安装并配置好Office 2021专业增强版。这套工具能有效提高您的学习和工作效率。熟练使用Office是现代社会的一项重要技能。如果在安装中遇到任何困难,欢迎留言交流。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值