给定由n个元素组成的集合,输出该集合所有可能的排列。例如,集合{a, b, c}的所有可能的排列为{(a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)}。如果给定的集合是{a,b,c,d}。那么所有可能的排列有下列的排列组成:
- 以a开头后面跟着(b,c,d)的所有排列
- 以b开头后面跟着(a,c,d)的所有排列
- 以c开头后面跟着(a,b,d)的所有排列
- 以d开头后面跟着(a,b,c)的所有排列
这表明,如果能够解决n-1个元素集合的排列问题,就可以解决n个元素集合的排列问题。
初始函数调用是perm(list, 0, n-1)
#define SWAP(x, y, t) ((t) = (x), (x) = (y), (y) = (t))
void perm (char *list, int i, int n)
{
int j, temp;
if (i == n)
{
for (j = 0; j <= n; j++)
printf ("%c", list[j]);
printf (" ");
}
else
{
for (j = i; j <= n; j++)
{
SWAP (list[i], list[j], temp);
perm (list, i + 1, n);
SWAP (list[i], list[j], temp);
}
}
}