全排列算法

给定由n个元素组成的集合,输出该集合所有可能的排列。例如,集合{a, b, c}的所有可能的排列为{(a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a)}。如果给定的集合是{a,b,c,d}。那么所有可能的排列有下列的排列组成:

  1. 以a开头后面跟着(b,c,d)的所有排列
  2. 以b开头后面跟着(a,c,d)的所有排列
  3. 以c开头后面跟着(a,b,d)的所有排列
  4. 以d开头后面跟着(a,b,c)的所有排列

这表明,如果能够解决n-1个元素集合的排列问题,就可以解决n个元素集合的排列问题。

初始函数调用是perm(list, 0, n-1)

#define SWAP(x, y, t) ((t) = (x), (x) = (y), (y) = (t))

void perm (char *list, int i, int n)
{
    int j, temp;
    if (i == n)
    {
        for (j = 0; j <= n; j++)
            printf ("%c", list[j]);
        printf ("  ");
    }
    else
    {
        for (j = i; j <= n; j++)
        {
            SWAP (list[i], list[j], temp);
            perm (list, i + 1, n);
            SWAP (list[i], list[j], temp);
        }
    }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值