一、全排列的概念:
根据360百科,我们知道从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。
二、全排列的算法:
- 递归实现全排列(存在重复数字交换问题,于是又有了第二种方法)
- 去重全排列
- 非递归实现全排列(循环交换,由小到大)
三、接下来我们学习第一种方法—–递归实现全排列
- 算法实现:
#include<stdio.h>
#include<iostream>
using namespace std;
void Perm(int* array,size_t size,size_t N)//保证数组array前N个数不动,进行全排列
{
if(N == size)
{
for(size_t idx=0; idx<size; ++idx)
cout<<array[idx]<<" ";
printf("\n");
}
for(size_t i=N; i<size; ++i)
{
swap(array[N],array[i]);
Perm(array,size,N+1);
swap(array[N],array[i]);
}
}
int main()
{
int arr[] = {1,2,3,4};
Perm(arr,4,1);
getchar();
return 0;
}
自己为了方便理解画的分析递归图
输出结果:
但当我们输入1 1 3 1这样有重复数字的数列时,输出的结果是这样的
可以看见,出现重复的数列,这并不是我们想要的结果,接下来,我们将要介绍第二种方法即去重的全排列来解决这个问题
四、去重的全排列
- 基本思想:去重的全排列就是从第一个数字起每个数分别与它后面非重复出现的数字交换;增加了判断条件,在两个值交换之前首先判断者两个数值是否相等,若相等则不交换,不想等则进行交换
- 算法实现
#include<stdio.h>
#include<iostream>
using namespace std;
bool IsSwap(int* array,int i,int N)//若两个值相等则不交换,当前的两个值是array[i]与array[N],
{
if(i!=N)//当i= N时,是自身与自身进行交换,此时必须交换
{
if(array[i]==array[N])//当除自身与自身相等还有重复的值时,就不进行交换
return false;
}
return true;
}
void Perm(int* array,size_t size,size_t N)//保证数组array前N个数不动,进行全排列
{
if(N == size)
{
for(size_t idx=0; idx<size; ++idx)
cout<<array[idx]<<" ";
printf("\n");
}
for(size_t i=N; i<size; ++i)
{
if(IsSwap(array,i,N))
{
swap(array[N],array[i]);
Perm(array,size,N+1);
swap(array[N],array[i]);
}
}
}
int main()
{
int arr[] = {1,1,4,1};
Perm(arr,4,1);
getchar();
return 0;
}
- 结果图