UVA - 1629 切蛋糕dp


自己终于能做出来了,主要是看到这里的子问题,所以才能够这样想的,而且当然用的就是记忆化搜索了

但是我的代码是920ms,赶紧看看别人的代码优化,,

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<string>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<stack>
#include<cmath>
#include<map>
#include<vector>
#define inf 0x3f3f3f3f
#define INF 1000000000
#define bug1 cout<<"bug1"<<endl;
#define bug2 cout<<"bug2"<<endl;
#define bug3 cout<<"bug3"<<endl;
using namespace std;
int n,m,k;
int mat[25][25];
int num[25][25][25][25];
int adp[25][25][25][25];
int get(int l,int r,int ll,int rr){
    if(num[l][r][ll][rr]!=-1)return num[l][r][ll][rr];
    int ret=0;
    for(int i=l;i<=ll;++i){
        for(int j=r;j<=rr;++j){
            ret+=mat[i][j];
        }
    }
    return num[l][r][ll][rr]=ret;
}
int dp(int l,int r,int ll,int rr){
    if(l>ll||r>rr)return 0;
    if(get(l,r,ll,rr)==1)return 0;
    if(get(l,r,ll,rr)==0)return INF;//这个地方要是INF,我原本的没有考虑。其实还是题意问题,题意说不能 “每一块”蛋糕都要有,那么就不怕了
    if(adp[l][r][ll][rr]!=inf)return adp[l][r][ll][rr];
    int &tmp=adp[l][r][ll][rr];
    int h=rr-r+1;
    int w=ll-l+1;//wrong first,自己一开始没有加上1,结果错...
    for(int i=r;i<rr;++i){
        tmp=min(tmp,dp(l,r,ll,i)+dp(l,i+1,ll,rr)+w);
    }
    for(int i=l;i<ll;++i){
        tmp=min(tmp,dp(l,r,i,rr)+dp(i+1,r,ll,rr)+h);
    }
    return tmp;
}
int main(){
    int _case=0;
    while(~scanf("%d%d%d",&n,&m,&k)){
        int r,c;
        memset(num,-1,sizeof(num));
        memset(mat,0,sizeof(mat));
        memset(adp,inf,sizeof(adp));
        for(int i=1;i<=k;++i){
            scanf("%d%d",&r,&c);
            mat[r][c]=1;
        }
        printf("Case %d: %d\n",++_case,dp(1,1,n,m));
    }
}


for(int i=1;i<=n;++i){
            for(int j=1;j<=m;++j){
                cnt[i][j]=cnt[i-1][j]+cnt[i][j-1]-cnt[i-1][j-1]+mat[r][c];
            }
        }
        for(int i=1;i<=n;++i){
            for(int j=1;j<=m;++j){
                for(int k=1;k<=m-i+1;++k){
                    for(int h=1;h<=n-j+1;++h){
                        num[i][j][k][h]=cnt[k][h]-cnt[i][h]-cnt[k][j]+cnt[i][j];
                    }
                }
            }
        }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值