2018 Multi-University Training Contest 8 1

hdu 6397 Character Encoding


求 x1+x2+…+xm = k (0≤xi < n) 的整数解的组数。

无上界(xi>=0) 选法
x1+x2+…+xm = k C(k+m-1, m-1);
i个违法条件
容斥系数 变量选法
(-1)^i * C(m, i) * C(k-i*n+m-1, m-1)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
#define ll long long
const int mod = 998244353;
const int N = 2e5+5;

int t, n, m, k;
ll inv[N], f[N], ff[N], tmp[N];

void init()///阶乘,逆元,逆元连乘
{
    f[0] = 1;
    for(int i=1; i<N; i++)
        f[i] = f[i-1] * i % mod;
    inv[1] = 1;
    for(int i=2; i<N; i++)
        inv[i] = (mod - mod/i) * inv[mod%i] % mod;
    ff[0] = 1;
    for(int i=1; i<N; i++)
        ff[i] = ff[i-1] * inv[i] % mod;
}
ll C(ll x, ll y)///组合数
{
    if(x<0 || y<0 || x<y) return 0;
    return f[x] * ff[y] % mod * ff[x-y] % mod;
}

int main()
{
    init();
    scanf("%d", &t);
    while(t --){
        memset(tmp, 0, sizeof(tmp));
        scanf("%d%d%d", &n, &m, &k);
        for(int i=0; i<=m&&i<=k/n; i++)
            tmp[i] = C(m, i) * C(k-i*n+m-1, m-1) % mod;
        for(int i=min(m,k/n)-1; i>=0; i--)///(-1)^i
            tmp[i] = (tmp[i] + mod - tmp[i+1])%mod;
        printf("%lld\n", tmp[0]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值