求 x1+x2+…+xm = k (0≤xi < n) 的整数解的组数。
无上界(xi>=0) 选法
x1+x2+…+xm = k C(k+m-1, m-1);
i个违法条件
容斥系数 变量选法
(-1)^i * C(m, i) * C(k-i*n+m-1, m-1)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define ll long long
const int mod = 998244353;
const int N = 2e5+5;
int t, n, m, k;
ll inv[N], f[N], ff[N], tmp[N];
void init()///阶乘,逆元,逆元连乘
{
f[0] = 1;
for(int i=1; i<N; i++)
f[i] = f[i-1] * i % mod;
inv[1] = 1;
for(int i=2; i<N; i++)
inv[i] = (mod - mod/i) * inv[mod%i] % mod;
ff[0] = 1;
for(int i=1; i<N; i++)
ff[i] = ff[i-1] * inv[i] % mod;
}
ll C(ll x, ll y)///组合数
{
if(x<0 || y<0 || x<y) return 0;
return f[x] * ff[y] % mod * ff[x-y] % mod;
}
int main()
{
init();
scanf("%d", &t);
while(t --){
memset(tmp, 0, sizeof(tmp));
scanf("%d%d%d", &n, &m, &k);
for(int i=0; i<=m&&i<=k/n; i++)
tmp[i] = C(m, i) * C(k-i*n+m-1, m-1) % mod;
for(int i=min(m,k/n)-1; i>=0; i--)///(-1)^i
tmp[i] = (tmp[i] + mod - tmp[i+1])%mod;
printf("%lld\n", tmp[0]);
}
return 0;
}