实际是个统计工作。但这里不打算讲模板参数的计算,因为模板估值本身可能不少人还不了解,另外,模板参数计算起来非常复杂,虽然其原理并不难,详细原理请参考
http://www.cs.ualberta.ca/~mburo/ps/improve.pdf ,本文实际是对这篇论文的简化和个人理解。顺便说一下,
http://www.cs.ualberta.ca/~mburo/publications.html 这里有很多关于黑白棋的论文,要写黑白棋的朋友不可不看。
相信大家对稳定子、行动力、潜在行动力的概念都已经很清楚了。所以在此考虑一个简单的估值模型。f(p)=w1*f1(p) + w2*f2(p) + w3*f3(p),其中p为一个局面,f1是稳定子个数,f2是行动力,f3是潜在行动力,w1,w2,w3是他们的权重。要估值准确,就需要设置w1,w2,w3的值,通常我们都是猜测他们的值,或根据经验来设定。但是这样不能达到最优。实际上,我们可以统计大量的已知结果的棋局,来求出他们的值。对于已知的棋局,其结果是已知的,那么对于大量的棋局,我们要使得每个局面下通过f(p)计算得到的值尽量接近最终结果,这就是一个多元线性拟合问题。最终的目的是使每个局面的估值误差的平方和(我认为绝对值的和也可以)达到最小化。
对于这类问题,一般可以用多元线性回归来求解,求解一个方程组。但对于这里的情况而言,由于样本数量巨大,可达数
相信大家对稳定子、行动力、潜在行动力的概念都已经很清楚了。所以在此考虑一个简单的估值模型。f(p)=w1*f1(p) + w2*f2(p) + w3*f3(p),其中p为一个局面,f1是稳定子个数,f2是行动力,f3是潜在行动力,w1,w2,w3是他们的权重。要估值准确,就需要设置w1,w2,w3的值,通常我们都是猜测他们的值,或根据经验来设定。但是这样不能达到最优。实际上,我们可以统计大量的已知结果的棋局,来求出他们的值。对于已知的棋局,其结果是已知的,那么对于大量的棋局,我们要使得每个局面下通过f(p)计算得到的值尽量接近最终结果,这就是一个多元线性拟合问题。最终的目的是使每个局面的估值误差的平方和(我认为绝对值的和也可以)达到最小化。
对于这类问题,一般可以用多元线性回归来求解,求解一个方程组。但对于这里的情况而言,由于样本数量巨大,可达数