黑白棋模板估值简介

本文介绍了黑白棋的模板估值法,通过将全局的行动力、潜在行动力和稳定子转化为局部参数,加快估值速度。选取不同的模板,计算模板配置得分,并通过大量棋局训练得到模板系数。模板估值在终局表现准确,但开局时可能存在误差,且未遇见过的模板配置可能导致误差。
摘要由CSDN通过智能技术生成
    关于黑白棋的估值,有三个很重要的概念,行动力,潜在行动力和稳定子,还有一个概念是奇偶性,在终局时有些作用,而开局时没什么用处。对此不了解的朋友可以到网上搜索,有很多介绍。本文主要介绍一下模板估值的原理。
    行动力,潜在行动力和稳定子,这些参数的计算都是比较复杂的,为了加速估值,提出了模板估值法。模板估值的思想是将全局的行动力,潜在行动力和稳定子化为局部的行动力,潜在行动力和稳定子,再将这些局部的参数组合来表示全局参数。每个局部包含的棋子个数不多,可以预先计算好,这样在最终估值时就可以用查表代替计算,如此来加快速度。
    模板是棋盘上的某一块区域,比如棋盘上的一行,一个角落上边长为3的方块等。注意,棋盘上的第一行和第八行以及第一列、第八列都是等效的,属于同一模板,因为他们可以通过旋转来得到,同理,四个角落的方块也是同一模板。模板中每个棋位有3种状态——黑、白、空,因此一个包含N个棋子的模板总共有3^N种状态,也叫模板配置。根据每种模板配置所能代表的局部行动力、潜在行动力、稳定子,可以为每种模板配置打分,而对一个局面估值时则把棋局拆分为各个模板,根据每个模板的配置来查找每个局部的得分,最后加起来得到整个局面的得分。
    模板的选择,我不清楚是否有什么理论指导,但大多数强力的程序都做出了类似的选择,以Zebra为例,他选择了11种模板,分别是——第2、3、4行,长度4、5、6、7、8的斜线,第一行加上两个X格(X格就是B2这种位置),角落上的边长为3的方块,角落上2X5的长方形块。其中长度为8的斜线通过旋转有两种实例,而2X5的长方
•Alpha-Beta剪枝(Alpha-Beta pruning) 对于一般的最大最小搜索,即使每一步只有很少的下法,搜索的位置也会增长非常快;在大多数的中局棋形中,每步平均有十个位置可以下棋,于是假设搜索九步(程序术语称为搜索深度为九),就要搜索十亿个位置(十的九次方),极大地限制了电脑的棋力。于是采用了一个方法,叫“alpha-beta剪枝”,它大为减少了检测的数目,提高电脑搜索的速度。各种各样的这种算法用于所有的强力Othello程序。(同样用于其他棋类游戏,如国际象棋和跳棋)。为了搜索九步,一个好的程序只用搜索十万到一百万个位置,而不是没用前的十亿次。 •估值 这是一个程序中最重要的部分,如果这个模块太弱,则就算算法再好也没有用。我将要叙述三种不同的估值函数范例。我相信,大多数的Othello程序都可以归结于此。 棋格表:这种算法的意思是,不同的棋格有不同的值,角的值大而角旁边的格值要小。忽视对称的话,棋盘上有10个不同的位置,每个格根据三种可能性赋值:黑棋、白棋和空。更有经验的逼近是在游戏的不同阶段对格赋予不同的值。例如,角在开局阶段和中局开始阶段比终局阶段更重要。采用这种算法的程序总是很弱(我这样认为),但另一方面,它很容易实现,于是许多程序开始采用这种逼近。 基于行动力的估值:这种更久远的接近有很强的全局观,而不像棋格表那样局部化。观察表明,许多人类玩者努力获得最大的行动力(可下棋的数目)和潜在行动力(临近对手棋的空格,见技巧篇)。如果代码有效率的话,可以很快发现,它们提高棋力很多。 基于模版的估值 :正如上面提及的,许多中等力量的程序经常合并一些边角判断的知识,最大行动力和潜在行动力是全局特性,但是他们可以被切割成局部配置,再加在一起。棋最少化也是如此。这导致了以下的概括:在估值函数中仅用局部配置(模版),这通常用单独计算每一行、一列、斜边和角落判断,再加在一起来实现。 估值合并:一般程序的估值基于许多的参数,如行动力、潜在行动力、余裕手、边角判断、稳定。但是怎么样将他们合并起来得到一个估值呢?一般采用线性合并。设a1,a2,a3,a4为参数,则估值s:=n1*a1+n2*a2+n3*a3+n4*a4。其中n1,n2,n3,n4为常数,术语叫“权重”(weight),它决定了参数的重要性,它们取决于统计值。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值