演讲人 | 余何 整理|物流麻将胡 来源 | 物流沙龙
编者按:
“纵观整个人工智能的发展历程可以发现,我们是站在过往先辈的肩膀上在做这件事情”,顺丰科技数据总监余何在物流沙龙2018数字化供应链峰会既LOG年会上的演讲开头如此强调。作为顺丰数据中心、服务中心,基础的IT设施数据负责管理者,理论与实践并重,他从人工智能的定义说起,紧接着从人工智能的发展历程、技术框架以及应用场景等内容延伸开来,阐释了人工智能在供应链数字化下的应用。
在业内有着“大师兄”昵称的余何,令人忍不住联想到武侠小说里门派中的大师兄,接下来,我们一起来看一看他的人工智能“江湖”,学个一招半式。
人工智能是什么?
人工智能是什么?余何给出了自己的解读——人工智能是指计算机能够替代人类实现识别、认知、分析和决策的多种功能,它主要包括三个阶段,依次分别是:逻辑计算、学习认知与意识情感。
1)逻辑计算。通过运用布尔代数、符号逻辑建立算法公式,再通过计算机进行计算,以达到释放人脑计算的目的。
2)学习认知。包括时空感知、经验抽象与想象创造三个部分。
3)意识情感。什么是意识情感?我知道我就是我,我知道自己的存在。我们在电影中看到的人工智能是什么?就是机器人有自己的意识会毁灭人类。而在余何看来,人工智能是可以模拟满足人类的情感需求,对人类自己缺乏的情感进行补充,要能证明自己的意识以及满足人类的情感才是真正的人工智能。
人工智能的发展历程
“纵观整个人工智能的发展历程可以发现,我们是站在过往先辈的肩膀上在做这件事情,很多伟大的科学家都在无关乎商业的象牙塔里做过研究。”余何表示。
人工智能的发展经历了三个阶段:
1、第一阶段:人工智能起步期
整个人工智能是从1956年开始的,当时最年轻的科学家只有29岁,名气最大的科学家当时不是讨论有什么样的科研结果或者什么产出?而只是做了一些假设:即什么是人工智能,可以通过哪些方式实现,有无相关标准?1956年,马文·明斯基组织达特茅斯会议标志AI诞生。
实际上,关于如何模拟人工智能当时分为两派,一派认为可以通过逻辑符号、布尔代数模拟;一派则主张完全打破原来计算的结构,仿造人类的大脑做神经网络。
1957年,心理学家罗森布拉特发明了神经网络模型Perceptron感知机,论文发表后引起了社会轰动,并得到商业界诸多投资。但与此同时,整个学术界亦对其进行非常激烈的批评,其中以马文·明斯基尤甚,马文·明斯基将对罗森布拉特的批评直接写到书中。
直至1970年,整个对人工智能的投资就像2000年互联网一样被打入寒冬。但无论如何,他们仍旧是人工智能的先驱。
2、第二阶段:机器学习时期
1982年,霍普菲尔德提出复合型的神经网络递归(复发型)网络,但当时投入到工业和商业的价值并不是很大;1986年,Rumelhar、Hinton等人提出了反向传播BP算法,解决了两层神经网络所需要的复杂计算量问题;90年代,DARPA人工智能计算机研究失败,SVM(Support Vector Machines,支持向量机)算法诞生,迅速打败了神经网络算法成为主流。
3、第三阶段:深度学习时期
2006年,Geoffrey Hinton发表了论文,首次提出了“深度学习”神经网络,人工智能在此兴起;2010年,举办ImageNet挑战赛;2012年,Andrew Ng建造最大的神经网络,骨骼大脑;2013深度学习算法在语音和视觉识别上都有重大突破;2016,AlphaGo击败人类职业围棋选。
尤其值得一提的是,1986年,“深度学习之父”Geoffrey Hinton当时在一所大学当教授,在这个时期,由于计算能力能够满足之后,他把人类的神经网络进行扩张,并且带出了很多学生,其中包括华裔李非非。
李非非做了一件事,她将1500多万张图片放到互联网上,通过分布式的管理方式让学生和科学家对这些图片进行标注,分成2200个分类,通过神经网络来快速识别图片,识别图片的正确率提高了2倍。“可以发现它不是一个算法的问题,而是数据问题,只要数据量足够大,正确率就高。”余何这样说道。
目前基本上是到了这样的阶段,我们的数据量已经足够,有了云计算的资源来支撑,至少在某个专业领域已经取得相应的成功。
人工智能的技术框架
很多人想自己做人工智能,或者成立一个团队去做和人工智能这个行业的相关工作,在这个行业中整个技术框架是怎样的?
1、大数据、云计算
大数据和云计算是整个AI的基础,先要信息化、数字化,这两个基础是最难的。和以往相比,现在获取数据的手段更多速度更快;在计算能力这块有顺丰云,在单位空间中计算能力越强越好。
2、算法、模型
在算法和模型这块,可以发现很多科学家采用的方式完全不一样,比如在神经网络这块,在没有计算能力和数据量的情况下可能是剑走边锋。
算法主要包括三种类型,分别为:无监督学习、监督学习和强化学习。
无监督学习是给定数据,从数据中发现信息。通过对这些事情分析后发现神经网络中只要看到有猫的视频存在,某部分神经元就会产生反应,自动辨别哪个是猫,这个时候是没有人去干预的。
监督学习会给定数据,预测这些数据的标签。它会告诉我们大量的信息是什么,并进行归类,比如前面李非非做的项目,1500万图片都是经过大量的人工去处理和达标的,识别率达到90%。
强化学习是给定数据,选择动作以最大化长期激励,是这几个阶段中最复杂的。类似于在玩一个游戏,这个时候不需要任何人告诉他游戏的规则,整个激励和角度在于是否做得好。
3、技术方向
技术方向比较明确的是计算机视觉,人脸现在也非常普及,此外还包括语言工程、自然语言处理以及决策规划。
4、瓶颈与研究
当前应用这些技术会遇到很多问题,如计算机视觉和语音工程会有很多噪音和干扰,这样的情况下通过什么方式让你的机敏度更高?机器与自然语言翻译这一块要求语量的信息要足够丰富;决策规划方面,目前我们要做的是,把应用场景中基于原来信息化、数据化和不断在变化的内容糅合在一起。
人工智能的应用场景
人工智能在物流领域有哪些应用?余何总结归纳了四个应用场景,包括收派、中转、运输、仓储。
其中,收派做了手写体的识别,原来是有人工跟单的,要去识别各种各样的人的字体,识别率可能在60%左右,现在完成第一轮的翻译后,结合现有的技术库历史数据进行识别,识别率可能是90%。
中转主要是网络的选址和路径规划。这是一个决策系统,要将整个全国全网的网点整个大的数据实现整个流转流向非常难。
当时做了一个切割,比如分为华东、华北,根据具体的业务场景做摸索,原来的人工智能也可以很好的运用,如计算机视觉可以在整个中转场有整套人工智能的识别系统,可以快速看到包裹的真实物流位置、捕捉单号;甚至可以在整个中转场看到人工作业的情况,如有无高空抛物或者按照制定位置认真工作;也可以通过计算机系统去完成具体场景,只要大的整套系统明确便可以很快运用。
此文系作者个人观点,不代表物流沙龙立场
深度学习应用中需要思考的问题
我在这儿只是列出了一部分该考虑的问题,各位小伙伴们可以在下面留言区进行补充。算法学习的过程不要想当然,从实际角度切入可能会让你少走很多弯路。
对于下列问题,我们无法给出统一的回答,因为答案取决于您想要解决的具体问题。但是,我们希望本文中列出的各项因素能引导您在初期系统地思考如何选择算法和工具:
我要解决的是有监督学习问题,还是无监督问题?如果是有监督学习,那么是分类问题还是回归问题?有监督学习是有“老师”的。这位“老师”就是一个确定输入和输出数据之间关联的训练数据集。例如,您可能需要标记图像。在这种分类问题中,输入是原始像素,而输出则是图片中的事物的名称。而在回归问题中,您可能需要教授神经网络如何预测连续值,例如根据住房面积这样的输入数据来判断房子的价格。无监督学习则能通过分析未标记的数据来检测相似性或异常状况。无监督学习没有“老师”;具体应用包括图像搜索和欺诈检测等。
如果是有监督学习,需要处理的标签数量有多少?需要准确标记的标签数量越多,问题的计算强度也就越大。ImageNet的训练数据集约有1000个类别;而鸢尾花数据库则只有3个类别。
每个批次应当包含多少数据?一个批次指的是数据集中的一组样例或实例,比如一组图像。在训练过程中,一个批次的实例全部输入神经网络,网络对这些实例进行预测,然后依据所有预测误差的平均值来更新模型的权重。批次越大,两次更新之间的等待时间(或称学习步骤)就越长。批次较小意味着网络从每个批次中学到的与问题数据集相关的信息较少。如果您有大量数据,一开始不妨将批次大小设定为1000,对于一些问题可以取得较好的学习效果。
需要处理的特征数量有多少?特征数量越多,需要的内存也越大。就图像而言,第一层的特征数量等于图像所包含的像素数。所以MNIST数据集中的28 x 28像素的图像有784个特征。医疗诊断中的图像则可能有14兆像素。
同样的问题,另一种表述是:应当选择哪种网络架构?微软研究院开发的Resnet网络在最近的ImageNet大赛中获得冠军,该网络有150个层。在其他条件相同的情况下,层数越多,需要处理的特征越多,所需要的内存也就越大。多层感知器(MLP)中的一个稠密层的特征密集度要远高于一个卷积层。人们之所以使用包含二次抽样层的卷积网络,正是因为这样可以大刀阔斧地“修剪”需要运算的特征。
要用怎样的方法来调试神经网络?许多人可能还对神经网络调试感到有些云里雾里。具体的操作方式有以下几种。可以根据实践经验来调试:观察网络的F1值,然后调整超参数。您也可以用超参数优化工具来实现一定程度的自动化调试。最后,您还可以采用示意性方法,比如用一个GUI来明确显示误差下降的速度以及激活分布的状况。
模型训练需要多少数据?怎样找到这些数据?
硬件:使用GPU、CPU还是两者并用?用单一GPU系统还是分布式系统?目前许多研究是用1~4个GPU的系统开展的。企业级解决方案通常需要更多资源,因此还必须使用大型CPU集群。
要使用哪种数据加工管道?如何进行数据的提取、转换和加载(ETL)?数据是在Oracle数据库中吗?还是在Hadoop集群上? 数据是在本地还是云端?
如何提取数据中的特征?虽然深度学习可以自动提取特征,但您可以用不同形式的特征工程来减轻计算负荷,加快训练速度,尤其是在特征比较稀疏的情况下。
应使用何种非线性函数、损失函数和权重初始化方式?非线性函数是与深度神经网络中每个层相对应的激活函数,可能是sigmoid函数、修正线性单元或其他函数。每种非线性函数通常与特定的损失函数搭配。
解决这个问题的最简架构是什么?并非所有人都愿意或有能力用Resnet来进行图像分类。
网络在哪里进行训练?模型要部署到哪里?需要与哪种平台集成?大多数人直到完成一个的原型时才开始思考这些问题,此时他们往往得用可扩展性更强的工具来重写自己的网络。您应当提前考虑最终需要使用的是Spark、AWS、Hadoop,还是别的平台。
我在这儿只是列出了一部分该考虑的问题,各位小伙伴们可以在下面留言区进行补充。算法学习的过程不要想当然,从实际角度切入可能会让你少走很多弯路。
原文:DL4J(https://deeplearning4j.org/cn/questions)
人工智能赛博物理操作系统
AI-CPS OS
“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。
AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:
重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?
AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:
精细:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。
智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。
高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。
不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
给决策制定者和商业领袖的建议:
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。
子曰:“君子和而不同,小人同而不和。” 《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能官 AI-CPS
用“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能金融”、“智能零售”、“智能驾驶”、“智能城市”;新模式:“财富空间”、“工业互联网”、“数据科学家”、“赛博物理系统CPS”、“供应链金融”。
官方网站:AI-CPS.NET
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com