RAG优化知识库检索(3):向量化模型选择与优化

引言

在检索增强生成(Retrieval-Augmented Generation,RAG)系统中,向量化模型(嵌入模型)扮演着至关重要的角色。它们负责将文本转换为向量表示,使得计算机能够理解和比较文本之间的语义相似性。选择合适的嵌入模型并对其进行优化,直接影响着RAG系统的检索质量和整体性能。
本文将深入探讨嵌入模型的发展历程、不同类型的嵌入模型比较、微调技术、多语言挑战以及嵌入维度与性能的权衡等关键问题,并通过实例分析不同嵌入模型在特定领域的表现。

嵌入模型的发展与比较

嵌入模型的发展历程

嵌入模型的发展可以追溯到早期的词向量模型,经历了从简单到复杂、从静态到动态、从通用到专业的演变过程:

  1. 早期词向量模型(2013年前):如One-hot编码、TF-IDF等简单模型,能够捕捉词频信息但无法表示语义关系。

  2. 静态词嵌入时代(2013-2017)

    • Word2Vec(2013):通过"词的上下文"预测任务学习词向量,首次在向量空间中体现词语间的语义关系。
    • GloVe(2014):结合全局矩阵分解和局部上下文窗口方法,改进了语义表示能力。
    • FastText(2016):引入子词信息,能更好地处理未登录词和形态丰富的语言。
  3. 上下文感知嵌入时代(2018-2020)

    • ELMo(2018):首个基于双向LSTM的上下文化词表示模型,同一个词在不同上下文中有不同的表示。
    • BERT(2018):基于Transformer架构的预训练语言模型,通过掩码语言模型任务学习深层双向表示。
    • RoBERTa、XLNet等(2019):BERT的改进版本,通过优化训练方法和数据量提升性能。
  4. 专用嵌入模型时代(2020至今)

    • Sentence-BERT(2019):针对句子级别相似度计算优化的BERT变体。
    • DPR(Dense Passage Retriever,2020):专为检索任务设计的双塔结构嵌入模型。
    • E5、BGE、GTE等(2022-2023):专门为检索和语义匹配优化的嵌入模型。
    • Jina Embeddings、OpenAI text-embedding-3等(2023-2024):支持长文本和多语言的高性能嵌入模型。

主流嵌入模型性能比较

模型名称 发布时间 参数量 最大输入长度 MTEB基准分数 特点
OpenAI text-embedding-3-large 2024 未公开 8192 65.0+ 高性能,支持多语言,闭源
Jina Embeddings v3 2024 5.7亿 8192 64.5+ 开源,多语言支持,任务特定LoRA
BGE-M3 2023 1.5亿 8192 63.5+ 开源,多语言支持
E5-large-v2 2023 3.35亿 512 62.5+ 开源,专注英文检索
GTE-large 2023 3.35亿 512 62.0+ 开源,中英双语
Cohere Embed 2023 未公开 2048 62.0+ 闭源,多语言支持

通用嵌入模型vs领域特定嵌入模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员查理

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值