知识图谱系列(5):表示学习

1. 引言

知识图谱表示学习(Knowledge Graph Representation Learning)旨在将知识图谱中的实体和关系映射到低维连续向量空间,使得这些向量能够保留知识图谱中的语义信息和结构特征。通过表示学习,我们可以将符号化的知识转化为计算机更易处理的数值表示,为知识图谱的补全、推理、问答等下游任务提供强大支持。与传统的基于规则的方法相比,表示学习方法具有更强的泛化能力和灵活性,能够更好地处理知识图谱中的不确定性和复杂性。

2. 知识图谱嵌入模型概述

知识图谱嵌入(Knowledge Graph Embedding, KGE)是知识图谱表示学习的核心技术,它将知识图谱中的实体和关系映射到低维连续向量空间,使得向量空间中的运算能够反映知识图谱中的语义关系。本节将概述知识图谱嵌入的基本原理、发展历程、主要类别以及评估方法。

2.1 知识图谱嵌入的基本原理

知识图谱嵌入的核心思想是学习实体和关系的低维向量表示,使得这些向量能够保留知识图谱中的语义信息和结构特征。

2.1.1 基本概念与定义

知识图谱三元组:知识图谱通常由一系列三元组 (h, r, t) 组成,其中 h 表示头实体,r 表示关系,t 表示尾实体。例如,(爱因斯坦, 出生于, 德国) 是一个三元组。

嵌入表示

  • 实体嵌入:将实体 e 映射为向量 e ∈ R d \mathbf{e} \in \mathbb{R}^d eRd
  • 关系嵌入:将关系 r 映射为向量 r ∈ R d \mathbf{r} \in \mathbb{R}^d rRd 或矩阵 R ∈ R d × d \mathbf{R} \in \mathbb{R}^{d \times d} RRd×d 或张量

评分函数:定义函数 f ( h , r , t ) f(h, r, t) f(h,r,t) 评估三元组 (h, r, t) 的合理性或可能性,评分越高表示三元组越可能成立。

学习目标:优化实体和关系的嵌入表示,使得知识图谱中存在的三元组评分高,不存在的三元组评分低。

2.1.2 嵌入学习的基本假设

知识图谱嵌入基于以下几个基本假设:

语义相似性假设:语义相似的实体在嵌入空间中应该距离较近。例如,"猫"和"狗"作为宠物,它们的嵌入向量应该比"猫"和"汽车"的嵌入向量更接近。

结构保持假设:知识图谱中的结构关系应该在嵌入空间中得到保持。例如,如果A是B的子类,B是C的子类,那么在嵌入空间中应该有某种运算使得A与C之间存在相应的关系。

关系模式假设:知识图谱中的关系模式(如对称性、传递性等)应该能够在嵌入空间中得到表达。例如,对于对称关系"结婚",如果(A, 结婚, B)成立,那么(B, 结婚, A)也应该成立。

2.1.3 嵌入学习的一般框架

知识图谱嵌入学习通常遵循以下框架:

  1. 模型定义:选择实体和关系的表示形式,定义评分函数
  2. 目标函数设计:设计优化目标,通常包括最大化正例评分、最小化负例评分
  3. 负采样策略:生成负例三元组,用于对比学习
  4. 优化算法:选择合适的优化算法更新嵌入参数
  5. 正则化方法:防止过拟合,提高模型泛化能力

2.2 知识图谱嵌入的发展历程

知识图谱嵌入技术经历了从简单到复杂、从单一模态到多模态的发展过程。

2.2.1 早期探索阶段(2011-2013)

早期的知识图谱嵌入研究主要受到词嵌入技术的启发,尝试将词嵌入的思想扩展到知识图谱领域。

代表工作

  • RESCAL(2011):使用张量分解方法,将关系建模为矩阵
  • NTN(2013):使用神经张量网络,增强表达能力
  • TransE(2013):提出平移模型,简单高效,成为后续研究的基础

特点:模型结构相对简单,计算效率和可扩展性是主要考虑因素。

2.2.2 快速发展阶段(2014-2017)

这一阶段,研究者提出了大量改进的嵌入模型,主要关注如何更好地处理复杂关系。

代表工作

  • TransH/TransR/TransD(2014-2015):改进TransE,更好地处理一对多、多对一、多对多关系
  • DistMult(2015):使用双线性对角模型简化计算
  • ComplEx(2016):引入复数嵌入,处理非对称关系
  • RotatE(2019):使用复平面上的旋转操作建模关系模式

特点:模型设计更加多样化,关注特定关系类型的处理能力。

2.2.3 深度学习融合阶段(2018至今)

随着深度学习的发展,知识图谱嵌入开始与深度学习技术深度融合。

代表工作

  • ConvE/ConvKB(2018):引入卷积神经网络处理嵌入
  • R-GCN(2018):使用关系感知的图卷积网络
  • KBGAT(2019):结合图注意力网络
  • KG-BERT(2019):利用预训练语言模型处理知识图谱

特点:模型复杂度提高,表达能力增强,开始关注多模态信息融合。

2.3 知识图谱嵌入的主要类别

根据建模方式的不同,知识图谱嵌入模型可以分为以下几类:

2.3.1 平移距离模型

平移距离模型将关系建模为嵌入空间中的平移操作,通过头实体向量加上关系向量接近尾实体向量来评估三元组的合理性。

代表模型

  • TransE f ( h , r , t ) = − ∥ h + r − t ∥ f(h,r,t) = -\|\mathbf{h} + \mathbf{r} - \mathbf{t}\| f(h,r,t)=h+rt
  • TransH:在关系特定超平面上进行平移
  • TransR:在关系特定空间中进行平移
  • TransD:使用动态映射矩阵

优点

  • 模型简单直观
  • 计算效率高
  • 易于实现和扩展

缺点

  • 难以处理复杂关系类型
  • 表达能力有限
2.3.2 语义匹配模型

语义匹配模型通过实体和关系向量的语义相似度来评估三元组的合理性,通常使用点积、双线性变换等操作。

代表模型

  • RESCAL f ( h , r , t ) = h T M r t f(h,r,t) = \mathbf{h}^T \mathbf{M}_r \mathbf{t} f(h,r,t)=hTMrt
  • DistMult f ( h , r , t ) = h T diag ( r ) t f(h,r,t) = \mathbf{h}^T \text{diag}(\mathbf{r}) \mathbf{t} f(h,r,t)=hTdiag(r)t
  • ComplEx:使用复数嵌入处理非对称关系
  • SimplE/TuckER:基于张量分解的方法

优点

  • 能够处理更复杂的关系模式
  • 表达能力强

缺点

  • 计算复杂度较高
  • 可能需要更多参数
2.3.3 神经网络模型

神经网络模型使用神经网络结构学习实体和关系的表示,以及它们之间的交互。

代表模型

  • NTN:使用神经张量网络
  • ConvE/ConvKB:使用卷积神经网络
  • R-GCN:使用关系感知的图卷积网络
  • KBGAT:使用图注意力网络

优点

  • 表达能力强
  • 能够捕捉复杂的非线性关系
  • 可以整合多种信息

缺点

  • 计算复杂度高
  • 需要更多训练数据
  • 可能存在过拟合风险

2.4 知识图谱嵌入的评估方法

评估知识图谱嵌入模型的性能是研究和应用的重要环节。

2.4.1 评估任务

链接预测:预测缺失的头实体或尾实体,即给定 (?, r, t) 或 (h, r, ?),预测可能的头实体或尾实体。

三元组分类:判断一个三元组是否正确,即给定 (h, r, t),判断其是否应该存在于知识图谱中。

关系预测:预测两个实体之间的关系,即给定 (h, ?, t),预测可能的关系类型。

2.4.2 评估指标

平均排名(Mean Rank, MR):正确实体的平均排名,越低越好。

平均倒数排名(Mean Reciprocal Rank, MRR):正确实体排名倒数的平均值,越高越好。
M R R = 1 ∣ Q ∣ ∑ i = 1 ∣ Q ∣ 1 r a n k i MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i} MRR=Q1i=1Qranki1

Hits@N:正确实体排在前N的比例,越高越好。
H i t s @ N = 1 ∣ Q ∣ ∑ i = 1 ∣ Q ∣ I ( r a n k i ≤ N ) Hits@N = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \mathbb{I}(rank_i \leq N) Hits@N=Q1i=1QI(rankiN)

AUC(Area Under Curve):ROC曲线下的面积,用于三元组分类任务。

2.4.3 评估设置

原始设置(Raw):考虑所有候选实体。

过滤设置(Filtered):排除测试时已知的正确三元组,更准确地评估模型性能。

时间感知评估:考虑知识图谱的时间演化,评估模型在不同时间点的性能。

2.4.4 常用基准数据集

FB15k/FB15k-237:从Freebase知识库抽取的数据集,FB15k-237移除了反向关系。

WN18/WN18RR:从WordNet抽取的数据集,WN18RR移除了反向关系。

YAGO3-10:从YAGO知识库抽取的数据集,包含更多实体和关系。

DBpedia:从Wikipedia抽取的结构化数据集。

NELL-995:从NELL(Never-Ending Language Learner)系统抽取的数据集。

2.5 知识图谱嵌入的挑战与前沿

尽管知识图谱嵌入技术取得了显著进展,但仍面临多项挑战。

2.5.1 主要挑战

可扩展性挑战:如何处理超大规模知识图谱的嵌入学习。

异构性挑战:如何处理包含不同类型实体和关系的异构知识图谱。

动态性挑战:如何处理随时间变化的动态知识图谱。

可解释性挑战:如何提高嵌入模型的可解释性。

多模态融合挑战:如何有效融合文本、图像等多模态信息。

2.5.2 前沿研究方向

预训练与微调:利用预训练模型加速嵌入学习,适应特定领域。

自监督学习:减少对标注数据的依赖,利用知识图谱自身结构进行学习。

图神经网络创新:开发更适合知识图谱特性的图神经网络架构。

跨模态对齐:研究不同模态信息之间的对齐和融合方法。

联邦学习:在保护隐私的前提下,实现分布式知识图谱的嵌入学习。

3. TransE/TransR/TransH等经典模型

平移距离模型是知识图谱嵌入领域最具代表性的模型系列,以TransE为开端,发展出了一系列改进模型,如TransH、TransR、TransD等。这些模型以其简洁的思想、高效的计算和良好的性能,在知识图谱嵌入领域占据重要地位。本节将详细介绍这些经典模型的原理、特点、优缺点以及应用场景。

3.1 TransE模型

TransE(Translation Embedding)是平移距离模型的开创性工作,由Bordes等人于2013年提出,以其简洁的思想和良好的性能成为知识图谱嵌入领域的里程碑。

3.1.1 基本原理

TransE的核心思想是将关系建模为嵌入空间中的平移操作。对于一个三元组(h, r, t),TransE希望头实体向量加上关系向量后,能够接近尾实体向量,即:

h + r ≈ t \mathbf{h} + \mathbf{r} \approx \mathbf{t} h+rt

这一思想可以形象地理解为:如果从头实体出发,沿着关系向量移动,应该能够到达或接近尾实体的位置。

评分函数
f ( h , r , t ) = − ∥ h + r − t ∥ 1 / 2 f(h, r, t) = -\|\mathbf{h} + \mathbf{r} - \mathbf{t}\|_{1/2} f(h,r,t)=h+rt1/2

其中, ∥ ⋅ ∥ 1 / 2 \|\cdot\|_{1/2} 1/2 表示L1范数或L2范数。评分越高(即距离越小),表示三元组越可能成立。

目标函数
L = ∑ ( h , r , t ) ∈ S ∑ ( h ′ , r , t ′ ) ∈ S ( h , r , t ) ′ [ γ + f ( h , r , t ) − f ( h ′ , r , t ′ ) ] + \mathcal{L} = \sum_{(h,r,t) \in S} \sum_{(h',r,t') \in S'_{(h,r,t)}} [\gamma + f(h, r, t) - f(h', r, t')]_+ L=(h,r,t)S(h,r,t)S(h,r,t)[γ+f(h,r,t)f(h,r,t)]+

其中, [ x ] + = max ⁡ ( 0 , x ) [x]_+ = \max(0, x) [x]+=max(0,x) γ \gamma γ 是边界超参数, S S S 是正例三元组集合, S ( h , r , t ) ′ S'_{(h,r,t)} S(h,r,t) 是对应的负例三元组集合。

3.1.2 学习算法

TransE的学习算法相对简单:

  1. 初始化:随机初始化实体和关系的嵌入向量
  2. 负采样:对于每个正例三元组,通过替换头实体或尾实体生成负例
  3. 随机梯度下降:使用SGD等优化算法更新嵌入参数
  4. 归一化:每次更新后对实体嵌入进行归一化,保持单位范数

伪代码

初始化实体嵌入 h, t ∈ Rd 和关系嵌入 r ∈ Rd
for epoch = 1 to n_epochs do
    for batch in 训练数据 do
        for (h, r, t) in batch do
            生成负例 (h', r, t')
            计算梯度并更新参数
        end for
        对实体嵌入进行归一化
    end for
end for
3.1.3 优缺点分析

优点

  • 简洁直观:模型思想简单明了,易于理解和实现
  • 计算效率高:参数量少,训练和推理速度快
  • 可扩展性好:适用于大规模知识图谱
  • 性能稳定:在多个基准数据集上表现良好

缺点

  • 难以处理一对多/多对一/多对多关系:由于每个实体只有一个嵌入向量,TransE难以同时满足 h + r ≈ t1 和 h + r ≈ t2(当t1 ≠ t2)
  • 难以处理对称/反对称关系:对于对称关系,TransE要求 r ≈ 0,这与关系的语义不符
  • 难以处理复合关系:无法很好地建模关系的组合性质
3.1.4 应用场景

TransE适用于以下场景:

  • 大规模知识图谱:当知识图谱规模较大,需要高效计算时
  • 以一对一关系为主的知识图谱:当知识图谱中大部分关系是一对一类型时
  • 初步探索和基线比较:作为知识图谱嵌入的基线模型
  • 资源受限环境:当计算资源有限时,TransE是一个高效的选择

3.2 TransH模型

TransH(Translation on Hyperplane)是对TransE的改进,由Wang等人于2014年提出,旨在解决TransE处理复杂关系类型的局限性。

3.2.1 基本原理

TransH的核心思想是将实体投影到关系特定的超平面上,然后在超平面上进行平移操作。这样,同一个实体在不同关系下可以有不同的表示,从而更好地处理复杂关系。

对于三元组(h, r, t),TransH的处理流程为:

  1. 将头实体h和尾实体t投影到关系r对应的超平面上,得到投影向量 h ⊥ \mathbf{h}_{\perp} h t ⊥ \mathbf{t}_{\perp} t
  2. 在超平面上执行平移操作: h ⊥ + r ≈ t ⊥ \mathbf{h}_{\perp} + \mathbf{r} \approx \mathbf{t}_{\perp} h+rt

投影操作
h ⊥ = h − w r T h w r \mathbf{h}_{\perp} = \mathbf{h} - \mathbf{w}_r^T \mathbf{h} \mathbf{w}_r h=hwrThwr
t ⊥ = t − w r T t w r \mathbf{t}_{\perp} = \mathbf{t} - \mathbf{w}_r^T \mathbf{t} \mathbf{w}_r t=twrTtwr

其中, w r \mathbf{w}_r wr是关系r对应的超平面法向量。

评分函数
f ( h , r , t ) = − ∥ h ⊥ + r − t ⊥ ∥ 1 / 2 2 f(h, r, t) = -\|\mathbf{h}_{\perp} + \mathbf{r} - \mathbf{t}_{\perp}\|_{1/2}^2 f(h,r,t)=h+rt1/22

3.2.2 学习算法

TransH的学习算法与TransE类似,但需要额外学习每个关系的超平面法向量:

  1. 初始化:随机初始化实体嵌入、关系嵌入和超平面法向量
  2. 负采样:生成负例三元组
  3. 梯度下降:更新参数
  4. 归一化:对实体嵌入和超平面法向量进行归一化
  5. 正交约束:确保关系向量与超平面法向量近似正交
3.2.3 优缺点分析

优点

  • 改进了处理复杂关系的能力:通过关系特定的投影,能够处理一对多/多对一/多对多关系
  • 保持了计算效率:相比TransE只增加了少量参数,计算复杂度仍然较低
  • 更好地建模关系特性:能够处理对称/反对称关系

缺点

  • 投影操作增加了计算复杂度:虽然增加不多,但相比TransE更复杂
  • 超参数增多:需要调整更多超参数,如正交约束的权重
  • 实体和关系仍在同一空间:没有完全分离实体空间和关系空间
3.2.4 应用场景

TransH适用于以下场景:

  • 复杂关系类型的知识图谱:当知识图谱包含大量一对多/多对一/多对多关系时
  • 需要平衡效率和表达能力:当既需要较高的计算效率,又需要处理复杂关系时
  • 关系具有丰富语义的知识图谱:当关系具有对称性、反对称性等特性时

3.3 TransR模型

TransR(Translation in Relation-specific Space)由Lin等人于2015年提出,进一步改进了TransH,将实体和关系映射到不同的空间,更好地捕捉实体和关系的语义特性。

3.3.1 基本原理

TransR的核心思想是实体和关系应该存在于不同的语义空间。具体来说:

  • 实体存在于实体空间 R d \mathbb{R}^d Rd
  • 关系存在于关系特定空间 R k \mathbb{R}^k Rk
  • 通过关系特定的投影矩阵 M r ∈ R k × d \mathbf{M}_r \in \mathbb{R}^{k \times d} MrRk×d 将实体从实体空间映射到关系空间

对于三元组(h, r, t),TransR的处理流程为:

  1. 将头实体h和尾实体t从实体空间投影到关系r的空间,得到投影向量 h r \mathbf{h}_r hr t r \mathbf{t}_r tr
  2. 在关系空间执行平移操作: h r + r ≈ t r \mathbf{h}_r + \mathbf{r} \approx \mathbf{t}_r hr+rtr

投影操作
h r = M r h \mathbf{h}_r = \mathbf{M}_r \mathbf{h} hr=Mrh
t r = M r t \mathbf{t}_r = \mathbf{M}_r \mathbf{t} t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员查理

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值