题目:
Chinese remainder theorem again
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1859 Accepted Submission(s): 715
Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
Input
输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
Output
对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
Sample Input
2 1 2 3 0 0
Sample Output
5
Author
lcy
Source
Recommend
lcy
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
int main()
{
int a,n,m[105],i,j,max1;
long long ma;
while(scanf("%d%d",&n,&a),n||a)
{
max1=-100;
for(i=0;i<n;i++)
{
scanf("%d",&m[i]);
if(m[i]>max1) max1=m[i];
}
for(i=1;;i++)
{
ma=i*max1-a;
for(j=0;j<n;j++)
{
if((ma%m[j])!=(m[j]-a))
break;
}
if(j==n) break;
}
printf("%d\n",i*max1-a);
}
return 0;
}
反思:
这个题目一开始进行暴力以为能过,可是换了两种暴力的方式都没有过,就对所给的条件进行了转化,发现是个弱弱的最小公倍数,就呵呵了