DFS序:每个节点在DFS深度优先遍历中的进出栈的时间序列
树是一种非线性结构,所以对树进行区间操作会很不方便,所以要考虑将树转化成数组形式以便操作
对树进行一趟DFS,同时维护一个时间戳,记录每个结点被访问的时间,可以想象,对同一棵子树上的结点,访问的时间一定是相连的,映射到数组上就是一片连续的区间,如此,对一棵子树进行操作,可以等价于对一片连续的区间进行操作,区间操作常常可以使用树状数组或线段树维护
我们常常需要维护以下信息:
Time:时间戳
l[i]:dfs进入子树i的时间
r[i]:dfs离开子树i的时间
显然l[i]~r[i]记录的就是子树i每个结点被访问的时间
#include <bits/stdc++.h>
#define int long long
using namespace std;
int v[1000005], l[1000005], r[1000005], t[1000005], Time, N, M, R;
vector<int> g[1000005];
void dfs(int now, int fa) {
l[now] = ++Time;
for (int i = 0; i < g[now].size(); i++) {
if (g[now][i] != fa) {
dfs(g[now][i], now);
}
}
r[now] = Time;
}
void add(int x, int v) {
for (; x <= N; x += x & -x) {
t[x] += v;
}
}
int ask(int x) {
int res = 0;
for (; x; x -= x & -x) {
res += t[x];
}
return res;
}
signed main() {
cin >> N >> M >> R;
for (int i = 1; i <= N; i++) {
cin >> v[i];
}
for (int i = 1; i < N; i++) {
int v, u;
cin >> v >> u;
g[v].push_back(u);
g[u].push_back(v);
}
dfs(R, 0);
for (int i = 1; i <= N; i++) {
add(l[i], v[i]);
}
while (M--) {
int op, a, x;
cin >> op;
if (op == 1) {
cin >> a >> x;
add(l[a], x);
} else {
cin >> a;
cout << ask(r[a]) - ask(l[a] - 1) << endl;
}
}
return 0;
}
区间修改用线段树就好了,这题有点卡常数,交第一次TLE了,第二次就过了,用树状数组也行,常数更小
#include <bits/stdc++.h>
#define int long long
using namespace std;
int v[1000005], l[1000005], r[1000005], d[4000005], lazy[4000005], Time, N, M, R;
vector<int> g[1000005];
void dfs(int now, int fa) {
l[now] = ++Time;
for (int i = 0; i < g[now].size(); i++) {
if (g[now][i] != fa) {
dfs(g[now][i], now);
}
}
r[now] = Time;
}
void push_down(int p, int l, int r, int m) {
d[p << 1] += lazy[p] * (m - l + 1);
d[p << 1 | 1] += lazy[p] * (r - m);
lazy[p << 1] += lazy[p];
lazy[p << 1 | 1] += lazy[p];
lazy[p] = 0;
}
void change(int p, int l, int r, int s, int t, int v) {
if (r < s || l > t) {
return;
} else if (s <= l && r <= t) {
d[p] += (r - l + 1) * v;
lazy[p] += v;
return;
} else {
int m = l + r >> 1;
push_down(p, l, r, m);
change(p << 1, l, m, s, t, v);
change(p << 1 | 1, m + 1, r, s, t, v);
d[p] = d[p << 1] + d[p << 1 | 1];
}
}
int query(int p, int l, int r, int s, int t) {
if (r < s || l > t) {
return 0;
} else if (s <= l && r <= t) {
return d[p];
} else {
int m = l + r >> 1;
push_down(p, l, r, m);
return query(p << 1, l, m, s, t) + query(p << 1 | 1, m + 1, r, s, t);
}
}
signed main() {
ios::sync_with_stdio(0), cin.tie(0);
cin >> N >> M >> R;
for (int i = 1; i <= N; i++) {
cin >> v[i];
}
for (int i = 1; i < N; i++) {
int v, u;
cin >> v >> u;
g[v].push_back(u);
g[u].push_back(v);
}
dfs(R, 0);
for (int i = 1; i <= N; i++) {
change(1, 1, N, l[i], l[i], v[i]);
}
while (M--) {
int op, a, x;
cin >> op;
if (op == 1) {
cin >> a >> x;
change(1, 1, N, l[a], r[a], x);
} else {
cin >> a;
cout << query(1, 1, N, l[a], r[a]) << endl;
}
}
return 0;
}