深度学习
svdalv
这个作者很懒,什么都没留下…
展开
-
deep learning 模型简介之CNN卷积网络(一)深度解析CNN
本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流。[1]Deep learning简介[2]Deep Learning训练过程[3]Deep Learning模型之:CNN卷积神经网络推导和实现[4]Deep Learning模型之:CNN的反向求导及练习[5]Deep转载 2015-12-03 19:50:25 · 1625 阅读 · 0 评论 -
深度卷积网络CCN与图像语义分割
感谢原作者目录(?)[+]转载请注明出处: http://xiahouzuoxin.github.io/notes/html/深度卷积网络CNN与图像语义分割.html级别1:DL快速上手级别2:从Caffe着手实践级别3:读paper,网络Train起来级别4:Demo跑起来读一些源码玩玩熟悉Caffe接口,写Demo这是硬功夫分析各层La转载 2015-12-07 21:07:57 · 1617 阅读 · 0 评论 -
cs231Linear classification: Support Vector Machine, Softmax笔记
score functionloss functionbias vectorgradient descenthow to define the details of the loss functionMulticlass Support Vector Machine losshinge losssquared hinge loss SVMregularization原创 2017-05-25 10:58:31 · 323 阅读 · 0 评论 -
CS231Optimization: Stochastic Gradient Descent笔记
Optimationscore function/loss functionconvex functionconvex optimizationsubgradientoptimization:Method 1core idea:iteative refinementBlindfolded hiker analogyMethod 2Random local S原创 2017-05-25 13:19:56 · 368 阅读 · 0 评论 -
CS231nNeural Networks Part 1: Setting up the Architecture
#########1.Brain analogies#############2.Modeling one neruonBiological motivation and connectionsneruro synapses dendrites axopn activation function sigmoid fuction #############3.Coar原创 2017-05-25 16:15:21 · 571 阅读 · 0 评论 -
csn231SettingUpTheDataAndTheModel
#####################setting up the data and the modelData PreprocessingWeight InitilizationBatch NormalizationRegularization(L2/L1/Maxnorm/Dropout)#######################Loss functions原创 2017-05-26 10:34:44 · 387 阅读 · 0 评论 -
深度学习模型中的优化方法
经典的深度学习第八章的一些笔记:原创 2018-05-22 22:36:27 · 801 阅读 · 0 评论