# 探索LangChain与Infinity Embeddings的集成:实现高效文本嵌入
## 引言
在现代自然语言处理(NLP)应用中,文本嵌入是一项重要技术,帮助我们将语句转化为向量,从而进行计算和分析。本文将介绍如何使用LangChain与Infinity项目中的嵌入进行集成,以实现高效的文本嵌入。
## 主要内容
### 什么是Infinity Embeddings?
Infinity Embeddings是一个开源的嵌入服务器,提供符合MIT协议的嵌入功能。它支持各种预训练模型,可以选择本地或API的方式进行嵌入。
### 环境准备
首先,确保您已安装必要的依赖项。使用以下命令安装Infinity的Python包:
```bash
pip install infinity_emb[torch,optimum]
此外,建议检查并安装torch
和onnx
依赖,以确保模型可以顺利运行。
选项1:本地嵌入
以下是使用InfinityEmbeddingsLocal
进行本地嵌入的代码示例:
from langchain_community.embeddings import InfinityEmbeddingsLocal
documents = [
"Baguette is a dish.",
"Paris is the capital of France.",
"numpy is a lib for linear algebra",
"You escaped what I've escaped - You'd be in Paris getting fucked up too",
]
query = "Where is Paris?"
embeddings