从零开始构建知识图谱:从文本到数据库的完整指南

## 引言
知识图谱是将复杂的关系与信息转化为结构化数据的重要技术工具。本篇文章旨在指导您如何从非结构化文本中构建知识图谱,并将其存储到图数据库中,为RAG(检索增强生成)应用提供支持。

## 主要内容

### 从文本中抽取结构化信息
利用大语言模型(LLM)从文本中抽取结构化信息是构建知识图谱的关键步骤。选择适合的LLM模型可显著提高输出的准确性和细节度。

### 存储到图数据库
提取到的结构化信息可以存储到图数据库中,例如Neo4j,以支持更复杂的数据分析和应用。

### 设置环境
首先,安装所需的Python包并设置环境变量。本例中我们使用Neo4j作为图数据库。

```python
%pip install --upgrade --quiet langchain langchain-community langchain-openai langchain-experimental neo4j

定义Neo4j连接

接下来,定义Neo4j的凭证和连接。

import os
from langchain_community.graphs import Neo4jGraph

os.environ["NEO4J_URI"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值