## 引言
知识图谱是将复杂的关系与信息转化为结构化数据的重要技术工具。本篇文章旨在指导您如何从非结构化文本中构建知识图谱,并将其存储到图数据库中,为RAG(检索增强生成)应用提供支持。
## 主要内容
### 从文本中抽取结构化信息
利用大语言模型(LLM)从文本中抽取结构化信息是构建知识图谱的关键步骤。选择适合的LLM模型可显著提高输出的准确性和细节度。
### 存储到图数据库
提取到的结构化信息可以存储到图数据库中,例如Neo4j,以支持更复杂的数据分析和应用。
### 设置环境
首先,安装所需的Python包并设置环境变量。本例中我们使用Neo4j作为图数据库。
```python
%pip install --upgrade --quiet langchain langchain-community langchain-openai langchain-experimental neo4j
定义Neo4j连接
接下来,定义Neo4j的凭证和连接。
import os
from langchain_community.graphs import Neo4jGraph
os.environ["NEO4J_URI"